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Abstract

We present attractiveness, a re�nement criterion for evolutionary
equilibria. Equilibria surviving this criterion are robust to small per-
turbations of the underlying payo¤ system or the dynamics at hand.
Furthermore, certain attractive equilibria are equivalent to others for
certain evolutionary dynamics. For instance, each attractive evolution-
arily stable strategy is an attractive evolutionarily stable equilibrium
for certain barycentric ray-projection dynamics, and vice versa.
Key words: attractive evolutionary equilibria, evolutionary dynam-
ics, evolutionary, dynamic & structural stability.
JEL-Codes: C62; C72; C73.

1 Introduction

The evolutionarily stable strategy (ESS ) of Maynard Smith & Price [1973]
is probably the best known concept from evolutionary game theory, rivaled
only by the replicator dynamics of Taylor & Jonker [1978]. The state y 2 Sn
is evolutionarily stable strategy if and only if a nonempty open neighborhood
U � Sn exists such that U 3 y; and x 2 Unfyg implies

(y � x) � f(x) > 0: (1)

Here, y and x are vectors of population shares or alternatively interpreted,
mixed strategies, Sn denotes the n-dimensional unit simplex. The func-
tion f is a relative �tness function (cf., Joosten [1996]), called an excess
payo¤ function elsewhere (e.g., Sandholm [2005]). Such a (vector)function
attributes to every subgroup in the population its �tness relative to the
population share weighted average �tness.

�Reinoud Joosten thanks Dorothea Herreiner for inspiring questions in Stony Brook on
another paper. Attractive has at least two meanings, �pulling in�as well as �appealing�.
Both meanings apply, at least subjectively.

yAddress of both: FELab and School of Management & Governance, University of
Twente, POB 217, 7500 AE Enschede, The Netherlands. Email corresponding author:
r.a.m.g.joosten@utwente.nl
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The ESS -concept is meant to capture that if a population in equilibrium
is invaded by any su¢ ciently small group, the system will return to the
original equilibrium state. This suggests a close relationship with stability
as used in the analysis of dynamic systems, but the ESS has been concipated
purely statically.1 Early e¤orts of linking the ESS with a dynamic system
for which it coincides with an asymptotically stable �xed point are Taylor
& Jonker [1978], Zeeman [1981] and Hofbauer et al. [1979].

Certain other asymptotically stable �xed points of evolutionary dynam-
ics have been proposed. For instance, the state y 2 Sn is evolutionarily
stable equilibrium (ESE, Joosten [1996]) if and only if an open neighbor-
hood U � Sn exists such that U 3 y; and x 2 Unfyg implies

(y � x) � h(x) > 0; (2)

where h : Sn ! On+1 = fx 2 Rn+1j
Pn+1
i=1 xi = 0g: Here, h represents the

evolutionary dynamics at hand. Slightly more formally, we have a system
of (n+ 1) autonomous di¤erential equations

dx

dt
= h(x) for all x 2 Sn:

Here, dxdt denotes the continuous-time change of composition of the popula-
tion, or alternatively the mixed strategy.2 It can be easily proven that (2)
implies that all trajectories su¢ ciently near y move towards it monotoni-
cally, i.e., the Euclidean distance to the equilibrium decreases steadily. This,
of course, implies that y is an asymptotically stable �xed point.

We are interested in stability in a broader sense than usually considered
in evolutionary game theory. Given evolutionary equilibrium y 2 Sn for
which f(y) = h(y) = 0n+1 satisfying some properties P leading to conse-
quences C; we can imagine perturbations to the tuple (y; f; h; P ): We want
the perturbed system to be qualitatively similar to the original. For instance,
if an evolutionarily stable equilibrium y is perturbed slightly to x0 2 U; then
for unperturbed f; h the property P given by (2) still holds and the conse-

quence C is that fxtgt�0
t!1! y under the dynamics. This is the familiar

question of dynamic stability, of course, but what can be said about C for
perturbations of f andnor h? What about �perturbations�of P?

We do not intend to examine all possible perturbations. We restrict at-
tention to the following interesting questions. Can we formulate re�nements
of evolutionary equilibrium concepts that give us back3 structural stability

1Yet the profession remains doggedly faithful to the concept. One of us vented his
amazement on this elsewhere (Joosten [2010]).

2The dynamics h should be connected to the relative �tness function and the di¤erent
classes do so in di¤erent manners with various interesting motivations, e.g., Sandholm
[2005,2010], Schlag [1998,1999], Hofbauer & Sigmund [1998]. Section 3 treats dynamics.

3Taylor & Jonker [1978] and Zeeman [1981] use methods implying dynamic and struc-
tural stability. Proofs using Lyapunov�s second method may allow more general results
on stability of �xed points, but razor sharp formulations reduce the robustness of results.
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of some kind? How damaging to our predictions is a slight error in assess-
ing f or h? How robust are our consequences with respect to imperfect
descriptions of the dynamics or the underlying system? Can we formulate
conditions such that ESS -stability and other types of evolutionary stability
such as ESE -stability concur?4 To answer these few questions of this re-
search agenda is already bound to be too ambitious for one paper, unless
we limit the range of games, dynamics or alternatively the type of equilibria
for which the property is to hold (see also e.g., Sandholm [2010a]).

Here, we focus on the latter, we examine the following concept to be used
as a re�nement of evolutionary equilibria. For given functions z1 : Rn+1 !
Rn+1 and z2 : Sn ! Rn+1 and y 2 Sn we say that y is attractive with
respect to z =

�
z1; z2

�
i¤ (i) z1(y) � z2(y) = 0 and (ii) an " 2 (0; 1) and an

open neighborhood U � Sn exist such that U 3 y; and x 2 Unfyg implies

z1(x) � z2(x)
jjz1(x)jj � jjz2(x)jj > ":

A state is weakly attractive if this inequality holds for " = 0: Recall that
the expression before the inequality sign is the cosine of the angle between
the two vectors involved. We connect z to the mathematics de�ning an
equilibrium whenever possible; for instance, an ESS y 2 Sn is attractive if
in the above z1(x) = (y � x) and z2(x) = f(x): Attractiveness induces a
re�nement of the ESS concept, the weaker form coincides with it.

Our results show that attractive evolutionary equilibria preserve their
de�ning properties for a series of perturbations of the payo¤ system or the
dynamics. So, slight mis-speci�cations of either are harmless with respect
to conclusions regarding the dynamic stability of the equilibrium at hand.

More interesting, by showing equivalence of attractive evolutionary equi-
libria of di¤erent origins, our conclusions turn out to be robust against slight
discrepancies in speci�cations of the equilibrium concept at hand as well.
For instance, each attractive evolutionarily stable strategy is an attractive
evolutionarily stable equilibrium under a large subclass of the barycentric
ray-projection dynamics, and vice versa. We also present �rst results on
equivalences between attractive evolutionarily stable strategies and attrac-
tive truly evolutionarily stable strategies on the one hand, and attractive
generalized evolutionarily stable equilibria on the other.

In the next section, we present equilibrium concepts in evolutionary game
theory and then introduce their �attractive�variants; in Section 3 we de�ne
evolutionary dynamics to be used. In Section 4 we show that attractive
equilibria are robust to perturbations of the underlying payo¤ system or the
dynamics. Section 5 is devoted to showing equivalences between attractive
equilibria. Section 6 discusses generalizations and further research, Section
7 concludes. All proofs can be found in the Appendix.

4Relating to the issue of perturbing property P:
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2 Evolutionary equilibria and attractiveness

Let x 2 Sn denote a vector of population shares for a population with
n+ 1 distinguishable, interacting subgroups. Here, Sn is the n-dimensional
unit simplex, i.e., the set of all non-negative n+1-dimensional vectors with
components adding up to unity. The interaction of the subgroups has conse-
quences on their respective abilities to reproduce, and ��tness�may be seen
as a measure of this ability to reproduce. As behavior of each subgroup is
assumed essentially predetermined, �tness depends only on the state of the
system, i.e., the composition of the population.

Let F : Sn ! Rn+1 be a �tness function, i.e., a continuous function
attributing to every subgroup its �tness at each state x 2 Sn. Then, the
relative �tness function f : Sn ! Rn+1 is given by:

fi(x) = Fi(x)�
n+1X
j=1

xjFj(x); for all i 2 In+1 = f1; :::; n+ 1g; x 2 Sn:

So, a relative �tness function attributes to each subgroup the di¤erence
between its �tness and the population share weighted average �tness taken
over all subgroups.

We already gave the de�nitions of the evolutionarily stable strategy
(ESS ) and the evolutionarily stable equilibrium (ESE ) in the introduction.
The state y 2 Sn is a saturated equilibrium if f(y) � 0n+1; a �xed
point if h(y) = 0n+1; a �xed point y is (asymptotically) stable if, for
any neighborhood U � Sn of y, there exists an open neighborhood V � U
of y such that any trajectory starting in V remains in U (and converges to
y): At a saturated equilibrium all subgroups with below average �tness have
population share equal to zero. So, rather than �survival of the �ttest�, we
have �extinction of the less �t�.

A saturated equilibrium y 2 Sn is called strict if fj(y) = 0 for precisely
one j 2 In+1 in an open neighborhood U � Sn of y: Every strict saturated
equilibrium is a vertex of the unit simplex. The saturated equilibrium is due
to Hofbauer & Sigmund [1988], the strict version to Joosten [1996].

The �xed point y 2 Sn is a generalized evolutionarily stable state
(GESS, Joosten [1996]) if and only if there exists an open neighborhood
U � Sn of y such that (1) holds. The GESS generalizes the ESS of Maynard
Smith & Price [1973] in order to deal with arbitrary relative �tness func-
tions5. If the �tness function is given by F (x) = Ax for some square matrix
A, every (strict) saturated equilibrium coincides with a (strict) Nash equi-
librium of the evolutionary bi-matrix game

�
A;A>

�
; moreover, the GESS

and ESS coincide.
5A relative �tness function is characterized by continuity and complementarity, i.e.,

x � f(x) = 0 for all x 2 Sn:
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Another concept also inspired by ESS avoids the traditional mistake of
de�ning a static evolutionary equilibrium concept. The �xed point y 2 Sn
is a truly evolutionarily stable state i¤ a nonempty open neighborhood
U � Sn(C(y)) containing y exists such thatX

i2C(y)
(yi � xi)

hi(x)

xi
�
X
i=2C(y)

hi(x) > 0: (3)

The TESS is due to Joosten [2009] where it is shown that the condition
above guarantees asymptotical stability of the equilibrium.

The following concept from Joosten [2009] generalizes the idea behind
the ESE. Let d : Rn+1 � Rn+1 ! R be a distance function, and V :
Rn+1 � Rn+1 ! R be di¤erentiable, homothetic with d: Then, y 2 Sn is a
generalized evolutionarily stable equilibrium if and only if a nonempty
open neighborhood U � Sn containing y; exists such that for all x 2 Unfyg it
holds that [V (x; y)� V (y; y)] �

�
V (x; y) < 0; where

�
V (x; y) =

Pn+1
i=1

@V
@xi
hi (x) :

For a GESE, each trajectory su¢ ciently nearby converges such that the dis-
tance to it decreases monotonically under at least one metric.

2.1 Attractive evolutionary equilibria

For given functions z1 : Rn+1 ! Rn+1 and z2 : Sn ! Rn+1 and y 2 Sn we
say that y is attractive with respect to z =

�
z1; z2

�
i¤ (i) z1(y) � z2(y) = 0

and (ii) an " 2 (0; 1] and an open neighborhood U � Sn exist such that
U 3 y; and x 2 Unfyg implies

z1(x) � z2(x)
jjz1(x)jj � jjz2(x)jj > ": (A)

A state y 2 Sn is weakly attractive for given z if the inequality (A) holds
for " = 0: The angle between z1(x) and z2(x); x 6= y, is acute, and bounded
away from 90 degrees.

Before introducing the attractive variants of equilibrium concepts treated
in the previous section, we need just another notation. Let for a GESE y, the
function V denote the one mentioned in the de�nition. Clearly, a function
W exists such that W (x; y) = �jV (x; y)� V (y; y)j for all x; y 2 Sn: So, the
above implies W (x; y) � 0; W (y; y) = 0 and

Pn+1
i=1

@W
@xi
hi (x) > 0:

Now, we are ready to give the attractive variants of four evolutionary
equilibrium concepts mentioned in the preceding sections. Let y 2 Sn; and
let U � Sn be a nonempty open neighborhood of y containing it, then

� y is an attractive (G)ESS i¤ (A) holds for all x 2 Unfyg; with
z1(x) = (y � x); z2(x) = f(x);

� y is an attractive ESE i¤ (A) holds for all x 2 Unfyg; with z1(x) =
(y � x); z2(x) = h(x);

5
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� y is an attractive TESS i¤ (A) holds for all x 2 Unfyg; with z1i (x) =
yi�xi
xi

for all i 2 In+1; z2(x) = h(x);

� y is an attractive GESE i¤ (A) holds for all x 2 Unfyg; with z1(x) =
DW (x) �

h
@W
@x1
; :::; @W

@xn+1

i
; z2(x) = h(x):

3 Evolutionary dynamics

In the sequel, we assume that there exists a given function h : Sn ! Rn+1
satisfying

Pn+1
j=1 hj(x) = 0 for all x 2 Sn. Consider this system of n + 1

autonomous di¤erential equations:

�
x =

dx

dt
= h(x) for all x 2 Sn; (4)

where dx
dt denotes the continuous-time changes of the vector x 2 Sn. A

trajectory under the dynamics h is a solution, fx(t)gt�0; to x(0) = x0 2
Sn and Equation (4) for all t � 0. We refrain from placing too many
mathematical restrictions on h at this point, we do require existence and
uniqueness of trajectories. Continuity of h implies existence, and Lipschitz
continuity or di¤erentiability implies uniqueness. We refer to Perko [1991]
as an excellent textbook on di¤erential equations and dynamics.

The evolution of the composition of the population is represented by
system (4). To make sense in an evolutionary framework further restrictions
on the system are required. The function h is therefore assumed to be
connected to the relative �tness function f in one of the many ways proposed
in the literature, cf., e.g., Nachbar [1990], Friedman [1991], Swinkels [1993],
Joosten [1996], Ritzberger & Weibull [1995].

For so-called sign-compatible evolutionary dynamics, the change in
population share of each subgroup with positive population share corre-
sponds in sign with its relative �tness; for weakly sign-compatible evolu-
tionary dynamics, at least one subgroup with positive relative �tness grows.6

Dynamics are one-sided sign-compatible if one of the two cases hold:
(i) all subgroups having nonnegative relative �tness grow, or (ii) all non-
extinct subgroups having nonpositive relative �tness shrink. Alternatives
were de�ned by Friedman [1991]: dynamics are weakly compatible if
f (x) � h (x) � 0 for all x 2 Sn (with strict inequality if x is not an equilib-
rium), order compatible if fi(x) < fj(x) implies hi(x) < hj(x) for interior
states.

Let the following functions from the interior of the n-dimensional unit
simplex to On+1; be componentwise, i.e., for all i 2 In+1; given by:

hBNi (x) = maxf0; fi(x)g � xi �
Pn+1
j=1 maxf0; fj(x)g;

6Both classes due to Joosten [1996].

6



 #1117 
 
 

  

 

 

 

 

 

 

 

 

hBRi (x) =

�
1� xi if i = j� 2 fk 2 In+1j fk(x) = maxh2In+1 fh(x)g;
�xi otherwise.

;

hREPi (x) = xifi(x);

hq�REPi (x) = xqi

�
fi(x)�

Pn+1
j=1 x

q
jfj(x)Pn+1

j=1 x
q
j

�
;

hOPDi (x) = fi(x)� 1
(n+1)

Pn+1
j=1 fi(x);

hRPDi (x) = fi(x)�
�Pn+1

i=1 fj(x)
�
xi;

hRUNi (x) = lim"#0
h
[" � fi(x) + xi]+ �

�Pn+1
j=1 [" � fj(x) + xj ]+

�
xi

i
;

hOUNi (x) = lim"#0

�
[" � fi(x) + xi]+ � xi + 1

n+1 �
�Pn+1

j=1 ["�fj(x)+xj ]+
n+1

��
;

hLi (x) = e
fi(x) �

�Pn+1
j=1 e

fj(x)
�
xi;

hWL
i (x) = xi

h
efi(x) �

�Pn+1
j=1 xje

fj(x)
�i
:

Above, j� is always uniquely determined, [y]+ = maxf0; yg; whereas super-
scripts BN, BR, REP, q-REP, OPD, RPD, RUN, OUN, L and WL refer to
the dynamics of Brown & Von-Neumann [1950], the best-response dynam-
ics of Gilboa & Matsui [1991] and Matsui [1992], the replicator dynamics,
the q-deformed replicator dynamics (cf., Harper [2010]), the orthogonal-
projection dynamics (Lahkar & Sandholm [2008]), the ray-projection dy-
namics (Joosten & Roorda [2011]), the generalized ray-projection and the
generalized orthogonal-projection of the dynamics of Nikaidô & Uzawa [1960]
(cf., Joosten & Roorda [2011]), the logit dynamics of Fudenberg & Levine
[1998] and the (weighted logit, our name) dynamics of Björnerstedt &
Weibull [1996] respectively. The q-deformed replicator dynamics for q 2
[0; 1] have two prominent members, the replicator dynamics (q = 1) and the
orthogonal projection dynamics (q = 0).

We now focus on a variant of dynamics analyzed by Hofbauer & Sigmund
[1998] and independently Hopkins [1999]. Let the �adaptive�dynamics hA :
Sn ! On+1 on the interior of the unit simplex be determined by

hA(x) = A(x)f(x) for all x 2 int Sn; (ADAPT)

where A : Rn+1 ! Rn+1�Rn+1 is a continuous function attributing to every
(n+1)-vector a symmetric, strictly positive de�nite (n+1)�(n+1)-matrix,
i.e., yA(x)y � 0 for all x; y and yA(x)y = 0 i¤ y = 0n+1:

The dynamics should ful�ll certain boundary conditions to be �admissi-
ble�as evolutionary dynamics, but for the present purposes the above will
su¢ ce. It is easy to con�rm that hA belongs to the set of weakly compatible
dynamics. The matrix function A can be regarded as a rotation opera-
tor, transforming every relative �tness vector into one pointing in the unit
simplex under an acute angle with the original.

7
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3.1 Barycentric ray-projection dynamics

We now de�ne a class unifying the orthogonal-projection dynamics of Lahkar
& Sandholm [2008] and the ray-projection dynamics of Joosten & Roorda
[2011]. Let � � 0; then the �-barycentric ray-projection dynamics of
f : int Sn ! Rn+1 are given by

h�(x) = f(x) +

Pn+1
i=1 fi(x)

1� (n+ 1)�(� � 1
n+1 � x):

The interpretation is that f(x) is projected unto the n-dimensional unit
simplex on a ray leading from x to � � 1n+1: Barycentric ray-projection
dynamics (with �nite but possibly very negative �) are not order compatible,
whereas it is easy to see that the OPD are. Observe that

h0
n+1
(x) = f(x) +

Pn+1
i=1 fi(x)

1�
Pn+1
i=1 0

�
0n+1 � x

�
= f(x)�

 
n+1X
i=1

fi(x)

!
x:

Moreover, if a = � � 1n+1; then

h�1
n+1
(x) � lim

�!�1
ha(x) = lim

�!�1

"
f(x) +

Pn+1
i=1 fi(x)

1� (n+ 1)�
�
� � 1n+1 � x

�#

= f(x)�
 
n+1X
i=1

fi(x)

!
1

(n+ 1)
� 1n+1:

The former type of projection dynamics are the ray-projection dynamics,
the latter the orthogonal projection dynamics. The ensuing result sheds
light on the positioning of the barycentric ray-projection dynamics.

Lemma 1 Barycentric ray-projection dynamics satisfy weak compatibility
and weak sign-compatibility for �nite � � 0.

We have summarized several connections between notions de�ned here and
the previous sections in two �gures. Figure 1 deals with equilibria under
di¤erent dynamics presented. (S )SAT, (G)ESE, (G)ESS, TESS, (A)SFP
and FP denote the sets of (strictly) saturated equilibria, (generalized) evo-
lutionarily stable equilibria, (generalized) evolutionarily stable states, truly
evolutionary stable states, (asymptotically) stable �xed points and �xed
points respectively. Figure 2 visualizes relations between classes of evolu-
tionary dynamics.

4 Perturbations of payo¤s or dynamics

Given z2 : Sn ! Rn+1; � 2 (0; 1) and " > 0; let Z�(z2; ") be the set of
continuous functions perturbations of z2 given by

Z�(z2; ") =

�
z : Sn ! Rn+1j z2(x) � z(x)

jjz2(x)jj � jjz(x)jj �
q
1� (�")2

�
:

8
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ASFP SFP  FP

SAT

GESE

GESS

TESS

SSAT

WSC

WSC
REP

SC

OPD
ESE

ESS

SC
RPD

RUN

WL,L
BN,BR

OUN

Figure 1: Arrows indicate inclusions; red indicates a general one, black for
special (classes of) dynamics, blue under special conditions. Abbreviations
coincide with those in the superscripts in Section 3; (W )SC denotes (weakly)
sign-compatible dynamics.

Obviously, Z(z2; ") = [�2(0;1)Z�(z2; ") is nonempty as it must contain z2 to
be obtained as the limit for � ! 0; " ! 0: The following result links the "
above to the same parameter in the de�nition of an attractive equilibrium
and speci�es a lower bound for the cosine between z1 and a perturbation
taken from the set above.

Proposition 2 Let y 2 int Sn be an attractive (G)ESS (ESE, TESS or
GESE) and let z in Z�(f; ") (Z�(h; ")) satisfy z(y) = 0n+1 then

z1(x) � z(x)
jjz1(x)jj � jjz(x)jj > "

�q
1� (�")2 �

q
�2 � (�")2

�
:

We see the important role of " here, the closer " is to unity, the more slack
can be o¤ered to the perturbations. The other parameter � is necessary to
specify the part behind the inequality sign. This result has the following
convenient consequence.

Corollary For every attractive evolutionary equilibrium concept presented,
a set of su¢ ciently small perturbations of the payo¤s or dynamics can be
found such that the equilibrium is attractive under these perturbations, too.

We conclude this (sub)section with a summarizing remark. Attractive evo-
lutionary equilibria presented here are re�nements of the concepts closely
associated. All ESE, TESS and GESE are asymptotically stable �xed points
of the dynamics at hand anyway, so their attractive variants are asymptot-
ically stable �xed points as well. For su¢ ciently small disturbances of the
evolutionary dynamics, the dynamic stability of the attractive variants is

9
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comp. dynamics      dynamics
Sign­ comp.

dynamics

Weakly sign­comp.

  Weakly compatible
REP

BN

BR

RPDOPD
Order compatible

     d
ynamics

One sided sign­

     dynamics

L

WL

Figure 2: Relations between dynamics. The red line depicts barycentric ray-
projection dynamics; the blue one q-deformed replicator dynamics, q 2 [0; 1]:

not jeopardized. Likewise for the attractive (G)ESS, its de�ning property
is not endangered for su¢ ciently small perturbations of the relative �tness
function at hand. Hence, results on dynamic stability of the (G)ESS for
certain dynamics still hold.

5 Equivalences between attractive equilibria

We now examine whether equivalences of certain attractive evolutionary
equilibria can be shown to hold for certain dynamics. As a starting point,
we focus on the attractive variants of the (G)ESS and the ESE. For this,
we begin with the following equivalence for x 2 int Snnfyg

(y � x) � f(x) = (y � x) �

24f(x)�
0@n+1X
j=1

fj(x)

1A � 1n+1
35 = (y � x) � hOPD(x):

So, ESS and ESE concur for the orthogonal-projection dynamics of Lahkar
& Sandholm [2008]. We use this identity for the ensuing result.

Proposition 3 For y 2 int Sn; the following statements are equivalent:

� y is an attractive ESE under the orthogonal-projection dynamics;

� y is an attractive (G)ESS.

In light of the conclusions made in the previous section, both types of at-
tractive evolutionary equilibria keep their de�ning properties under a series
of su¢ ciently small perturbations. In the following, we want to establish
not individual examples of dynamics (and perturbations thereof) for which
said equivalence holds, but rather a class of dynamics. Our natural ally in

10
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this endeavor remains the OPD, as the above shows a promising start. We
generalize the above slightly to incorporate the more general barycentric
projection dynamics. The next result reveals some potential in this respect.

Lemma 4 Let a = � � 1n+1 and h� denote the �-barycentric ray-projection
dynamics, then for x 2 int Sn :

� (y�x)�f(x)
jjy�xjj�jjf(x)jj �

1
2

p
2 (y�x)�h�(x)
jjy�xjj�jjh�(x)jj �

q
n+1
2

1
1�(n+1)� ;

� (y�x)�h�(x)
jjy�xjj�jjh�(x)jj �

(y�x)�f(x)
jjy�xjj�jjf(x)jj �

q
n+1
2

1
1�(n+1)� :

This lemma clearly extends the proposition preceding it. These inequalities
are important in proving equivalence of attractive ESS s and ESE s. One

must make sure that
q

n+1
2

1
1�(n+1)� is su¢ ciently small for the right hand

sides of the inequalities to be strictly positive if the goal is to show equiv-
alence between attractive ESS and attractive ESE for certain barycentric
projection dynamics. The next result hinges on the fact that the part behind
the minus sign can be made arbitrarily small.

Proposition 5 For y 2 int Sn; �0 exists such that for all � � �0 the
following statements are equivalent:

� y is an attractive ESE for the �-barycentric ray-projection dynamics;

� y is an attractive (generalized) ESS.

We now turn to showing equivalence of a similar nature for the attractive
ESS and the attractive TESS. Here our natural ally must be the replicator
dynamics as may be guessed from the overview in Figure 2.

Proposition 6 For y 2 int Sn, the following statements are equivalent:

� y is an attractive (generalized) ESS;

� y is an attractive TESS under the replicator dynamics.

If we want to generate a broader result in the spirit of our previous result, we
may search support from within the class of q-deformed replicator dynamics
(cf., Figure 2).

Proposition 7 For y 2 int Sn and q su¢ ciently near 1, the following
statements are equivalent:

� y is an attractive (generalized) ESS;

� y is an attractive TESS under the q-deformed replicator dynamics.

11
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Next, we intend to construct dynamics allowing a similar result. Following
Joosten & Roorda [2008] regarding generalized projection dynamics, we in-
troduce the function gp as a perturbation of the replicator dynamics in the
following manner (componentwise and for interior states x):

gpi (x) = xifi(x)�min
�
fi(x)

2p; p�2p
	
:

Here, p is a natural number su¢ ciently large to guarantee that near an
interior equilibrium the perturbation term goes to zero quickly. It can be
con�rmed that near an interior equilibrium gp(x)

p!1! hREP (x): Note that
this function does not induce dynamics on Sn: The following dynamics do
and they are given, componentwise and for interior states x; by

h�;p�PRi (x) = gpi (x)�
�� xi

�(n+ 1)� 1

n+1X
j=1

gpj (x): (PR)

We refer to these dynamics as the �; p-P(erturbed)R(eplicator) dynamics,
because �rst the replicator dynamics are perturbed to dynamics not nec-
essarily forward invariant with respect to the interior of the unit simplex
and then projected back on the unit simplex along the ray a � x, where
a = � �1n+1 as before. In the following equivalence result, the latter dynam-
ics will play an important role.

Proposition 8 For y 2 int Sn, let h�;p�PR given by (PR) determine the
dynamics. Then, the following statements are equivalent:

� y is an attractive (generalized) ESS;

� y is an attractive TESS.

We now focus on �adaptive�dynamics. Let dynamics hA : Sn ! On+1
be determined by

hA(x) = A(x)f(x) for all x 2 int Sn:

Recall that (ADAPT) implies that every matrix A(x) is symmetric and
strictly positive de�nite. It is well-established that any such matrix pos-
sesses an inverse matrix with the same properties. Let y 2 int Sn satisfy
f(y) = 0n+1 and let

Vy(x) � (y � x) �A�1(y)(y � x) for all x 2 Sn:

Clearly, Vy(x) = 0 if x = y; and Vy(x) > 0 otherwise, and
dVy(x)
dt = �2(y �

x) � A�1(y)A(x)f(x). So, Vy can be regarded as a Lyapunov function i¤ an
open neighborhood U 3 y exists such that for all x 2 Unfyg

(y � x) �A�1(y)A(x)f(x) > 0: (STAB)

12
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Furthermore, Vy can be regarded as a metric, hence y is a generalized evo-
lutionarily stable equilibrium. Now, we de�ne y as an attractive GESE
w.r.t. Vy if an open neighborhood U 3 y exists, such that

(y � x) �A�1(y)hA(x)
jjy � xjj � jjA�1(y)hA(x)jj > " for all x 2 Unfyg:

The next result gives a welcome addition to the equivalences aimed at here.

Proposition 9 For y 2 int Sn and adaptive dynamics represented by hA
satisfying (ADAPT), the following statements are equivalent.

� y is an attractive (generalized) ESS;

� y is an attractive GESE w.r.t. Vy.

Joosten [2009] showed that monotone convergence in one metric does not
necessarily hold for another. Monotone convergence for a metric means that
near an equilibrium all trajectories converge to it such that the distance to
the equilibrium as measured by that metric strictly decreases monotonically
in time. So, y satisfying (STAB) is a GESE for Vy, but not necessarily for
another distance function. Hence, the �nal result can not be included in the
overview of Figure 3 in the same manner as the other equivalences.

GESS

TESS

REP

OPD

ESE

AESS

ATESS

DISREP

BAR

AESE

Figure 3: Overview of equivalences shown, arrows denote inclusions: red for
general, black for special dynamics. BAR denotes the barycentric projec-
tion dynamics of Prop. 5, DISREP denotes disturbed replicator dynamics,
containing at least the dynamics in Prop. 7 & 8.

6 Discussion

We already mentioned that it is impossible to bound away the de�ning
equations of the four equilibrium concepts away from zero by a constant
as (y � x) ; h(x); f(x) y!x! 0n+1: The same can be said with respect to an
alternative de�nition of the evolutionarily stable state, i.e., (y�x)�F (x) y!x!
0: Here F is the �tness function instead of the relative �tness function.
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It is interesting to note that the analogy of attractiveness with respect
the �tness function F can not be constructed as

(y � x) � F (x)
jjy � xjj � jjF (x)jj

x!y! 0:

Observe that F (y) = c � 1n+1 for an interior equilibrium. As a result, F (x)
becomes �more and more perpendicular�to (y � x) as x approaches y:

In several contributions strict monotonicity is used to prove uniqueness
and global stability of interior equilibria under a wide variety of evolutionary
dynamics, cf., e.g., Hofbauer & Sandholm [2009], Hofbauer [2000]. Strict
monotonicity applied to the relative �tness function f implies

(y � x) � (f(y)� f(x)) < 0 for all x; y 2 Sn; x 6= y:

Monotonicity has a weak inequality sign. Hofbauer & Sandholm [2009] use
the terminology �(strictly) stable games�and these games concur with the
games for which (strict) monotonicity holds.

Strict monotonicity implies the de�ning condition for an interior ESS.
Strict monotonicity applied to the dynamics, excluding the boundary of
the state space, yields the de�ning condition for an ESE. Monotonicity im-
plies that the set of equilibria is connected and convex, strict monotonic-
ity furthermore implies uniqueness of an interior equilibrium, and conver-
gence of various adaptive processes to equilibrium (cf., e.g., Joosten [2006],
Harker & Pang [1990]). Among the processes converging to equilibrium un-
der (strict) monotonicity (or local variants thereof) we �nd BN -dynamics
(Nikaidô [1959], Hofbauer [2000]), BR-dynamics and logit dynamics (Hop-
kins [1999], Hofbauer [2000]) and �Brownian motions�(cf., Hofbauer [2000]).

The following global property, attractive monotonicity, can be thought
of as a stronger version of strict monotonicity and it induces the attractive
versions of both concepts for interior equilibria:

(y � x) �
�
z2(y)� z2(x)

�
jjy � xjj � jjz2(y)� z2(x)jj < " for all x; y 2 D � Sn; x 6= y:

To be precise, we take D � Sn because throughout this paper z2 was f
or h: For f , the relative �tness function, the small change is not necessary.
However, for many evolutionary dynamics the vertices of the unit simplex
are �xed points, hence the above is immediately violated if D is allowed to
be the entire unit simplex, and the concept would become void. Evidently,
z2 can only have at most one zero on D: Again the interpretation is obvious,
the angle between vectors (y � x) and

�
z2(y)� z2(x)

�
is never acute and

bounded away from 90 degrees. Attractive monotonicity guarantees that if
z2(y) = 0n+1, then for all x; y 2 D � Sn; x 6= y :

(y � x) �
�
z2(y)� z2(x)

�
jjy � xjj � jjz2(y)� z2(x)jj =

� (y � x) � z2(x)
jjy � xjj � jjz2(x)jj < ":
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Alternatively, strong monotonicity, cf., e.g., Harker & Pang [1990], implies

(y � x) �
�
z2(y)� z2(x)

�
jjy � xjj2 < " for all x; y 2 int Sn; x 6= y:

A localized variant of this property may yield further results in the spirit of
the results obtained here, an elegant interpretation however, seems lacking.

Logit dynamics, componentwise given as follows,

hL;�i (x) = e�fi(x) �

0@n+1X
j=1

e�fi(x)

1Axi for all x 2 int Sn;
have a limit for � ! 1 in the BR-dynamics. Hofbauer [2000] presents a
generalized notion of the BN -dynamics componentwise de�ned as follows

hBN;�i (x) = (max f0; fi(x)g)��

0@n+1X
j=1

(max f0; fj(x)g)�
1Axi for all x 2 int Sn:

For �!1, the dynamics hBN;� are also equal to the BR-dynamics.
There is a point why we mention these dynamics. Figure 2 gives a

visualization of dynamics in evolutionary game theory. We showed that
there is a one-parameter family of dynamics connecting the replicator and
the orthogonal-projection dynamics and another one connecting the latter
to the ray-projection dynamics. This insight helped us to obtain several
results in the previous section.

Possible extensions of dynamic stability results of the ESS are also to be
expected for BN, L, WL and BR. Thus far only isolated results and proofs
exist showing that ESS is su¢ cient for dynamic stability (cf., e.g., Nikaidô
[1959], Hofbauer [2000], Hopkins [1999]). By the above it is possible to
connect these four types of dynamics with one (or two) parameter families
as well joining at BR. The aim of future research could then be to extend
known results to these families of dynamics. The restriction most probably
enabling these results is attractiveness.

7 Conclusion

We presented attractiveness, a re�nement criterion to be applied to equilib-
ria in evolutionary game theory. Attractiveness stipulates an upper bound
for the angle between a pair of (vector) functions de�ning the equilibrium
concept at hand, in the latter�s vicinity. To be more precise, this angle
should be acute and strictly bounded away from 90 degrees.

We have applied the criterion to several equilibrium concepts in evolu-
tionary game theory, the (generalized) evolutionarily stable state (Maynard
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Smith & Price [1973], Joosten [1996]), the evolutionarily stable equilibrium
(Joosten [1996]), the truly evolutionarily stable state and the generalized
evolutionarily stable equilibrium (Joosten [2009]).

The viability of any re�nement concept hinges on two aspects: the sur-
vival rate of equilibria and promised value added of the properties of the
re�ned notion not necessarily shared by the original. On the �rst one, the
equilibria not surviving the re�nement criterion are precisely those that are
weakly attractive but not attractive. This raises the evasive issue of gener-
icity, but only a very small fraction of evolutionary equilibria seem involved.

The second aspect has been addressed in this paper with interesting
�rst results. Since attractive evolutionary equilibria form a subset of the
corresponding concepts, obviously all results on dynamic stability pertaining
to the latter must hold for the former as well. Additionally, we showed that
certain mis-speci�cations of the dynamics or the underlying payo¤ structure
are �harmless�, in the sense that attractiveness renders some robustness to
results and conclusions about the behavior of the system nearby.

Furthermore, di¤erent attractive equilibrium concepts coincide for cer-
tain classes of evolutionary dynamics. We showed that the attractive ver-
sions of the ESE and ESS concur for (a subclass of the) barycentric projec-
tion dynamics. Also, equivalence was shown of attractive ESS and TESS
for certain families of perturbations of the replicator dynamics. Finally, we
demonstrated a similar equivalence between attractive ESS and GESE with
respect to a suitable metric under �adaptive�dynamics, a large subclass of
weakly compatible evolutionary dynamics.

This adds another layer of robustness to results as neither the complete
speci�cation of the dynamics and payo¤ structure nor the equilibrium con-
cept to be used matter for the validity of conclusions about the dynamic
system nearby. We wish to emphasize that evolutionary models su¤er from
several sources of ambiguity, usually assumed away. The dynamics might be
known only incompletely, or the payo¤ structure driving them, or the way
payo¤s translate into �tness or alternatively, utilities, and the latter into
micro-adjustments of agents.

Even if all the aspects mentioned are known completely indeed, it still
remains a fact that the dynamics on the aggregate or macro level are de-
terministic approximations of very complex underlying stochastic processes
(cf., e.g., Sandholm [2010b]). Our results indicate that the re�nement cri-
terion of attractiveness o¤ers the kind of resilience to cope with all kinds of
ambiguities inevitable in the framework of evolutionary game theory.

The present contribution implicitly proposes a framework to look for
�meta� equilibria, i.e., those that satisfy several equilibrium conditions of
di¤erent nature for the dynamics at hand, where the latter or the payo¤
structure underlying them can be regarded de�ned �roughly�.
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8 Appendix

Derivation of barycentric ray-projection dynamics: Let x 2 int Sn
and let x+�tf(x) 2 int Rn+1; then the projection ex of the latter unto the
unit simplex Sn along the ray towards a = � � 1n+1 for � � 0 is given by

ex = x+�tf(x)� �t
Pn+1
i fi(x)Pn+1

i ai � 1��t
Pn+1
i fi(x)

(a� x��tf(x)) :

Here, �t is the (su¢ ciently small) length of the time interval elapsed. Then,
with regard to the projection unto the unit simplex this implies a move from
x 2 Sn to ex 2 Sn and therefore

�x = ex� x
= x+�tf(x)� �t

Pn+1
i=1 fi(x)Pn+1

i=1 ai � 1��t
Pn+1
i=1 fi(x)

(a� x��tf(x))� x

= �t

"
f(x)� �t

Pn+1
i=1 fi(x)Pn+1

i=1 ai � 1��t
Pn+1
i=1 fi(x)

(a� x��tf(x))
#
:

As
�
x = lim�t#0

�x
�t , we have

�
x = lim

�t#0

�t

�t

"
f(x)� �t

Pn+1
i=1 fi(x)Pn+1

i=1 ai � 1��t
Pn+1
i=1 fi(x)

(a� x��tf(x))
#

= lim
�t#0

"
f(x)�

Pn+1
i=1 fi(x)Pn+1

i=1 ai � 1��t
Pn+1
i=1 fi(x)

(a� x��tf(x))
#

= f(x)�
Pn+1
i=1 fi(x)Pn+1
i=1 ai � 1

(a� x) = f(x) +
Pn+1
i=1 fi(x)

1� �(n+ 1)
�
� � 1n+1 � x

�
:

8.1 Proofs

Lemma 1 We start with the latter part of the statement, i.e., for weak
sign-compatibility. For interior states is easy to see that

Pn+1
i=1 fi(x) > 0

implies that all subgroups with negative relative �tness decrease, hence only
subgroups with positive relative �tness can grow, and outside of equilib-
rium at least one of them must grow. Furthermore, if

Pn+1
i=1 fi(x) � 0,

then h�j (x) � fj(x) for all j 2 In+1: Hence, positive relative �tness implies
growth. So, barycentric projection dynamics are weakly sign-compatible.
To prove weak compatibility we compute for x 2 int Sn

f(x) � h�(x) = f(x) �
"
f(x) +

Pn+1
i=1 fi(x)

1� (n+ 1)�(� � 1
n+1 � x)

#

= jjf(x)jj2 + �

1� (n+ 1)�

"
n+1X
i=1

fi(x)

#2
� x � f(x)
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= jjf(x)jj2 + �

1� (n+ 1)�

"
n+1X
i=1

fi(x)

#2
� jjf(x)jj2 + �

1� (n+ 1)�
�p
n+ 1 � jjf(x)jj

�2
= jjf(x)jj2 �

�
1

1� (n+ 1)�

�
� 0:

Jensen�s inequality justi�es the �rst inequality sign above.

Proposition 2 Let the interior state y satisfy attractiveness for z = (z1; z2)
and let U be the open set containing y as stipulated in the de�nition of
attractiveness. Then, we use the trigonometric identity

cos(� + 
) = cos� � cos 
 � sin� � sin 
;

as follows. De�ne � = supx2Unfyg �(x) and 
 = supx2Unfyg 
(x) where �(x)
is the angle between z1(x) and z2(x); and 
(x) is the angle between z2(x)

and z(x) 2 Z�(z2; "), � 2 (0; 1): Then, cos � > " and cos 
 �
q
1� (�")2.

This in turn implies that

sup
x2Unfyg

z1(x) � z(x)
jjz1(x)jj � jjz(x)jj = cos(� + 
) > "

q
1� (�")2 � �"

p
1� "2

= "

�q
1� (�")2 �

q
�2 � (�")2

�
> 0:

So, y is also attractive for (z1; z):

Proposition 3 Note that

(y � x) � f(x)
jjy � xjj � jjf(x)jj =

jjhOPD(x)jj
jjf(x)jj

(y � x) � hOPD(x)
jjy � xjj � jjhOPD(x)jj :

Because the OPD induce a vector in the plane of the unit simplex and f(x)
is always perpendicular to x, we can easily see that

1

2

p
2 � jjhOPD(x)jj

jjf(x)jj � 1:

Clearly, if y is an attractive ESE for the OPD (with "ESE referring to the
inequality (A) for ESE ), then

(y � x) � f(x)
jjy � xjj � jjf(x)jj >

jjhOPD(x)jj
jjf(x)jj "ESE �

1

2

p
2"ESE :

Conversely, if y is an attractive ESS (with "ESS referring to the inequality
(A) for ESS ), then

(y � x) � hOPD(x)
jjy � xjj � jjhOPD(x)jj >

jjf(x)jj
jjhOPD(x)jj"ESS � "ESS :
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This proves the statement of the proposition.

Lemma 4 Note that

(y � x) � f(x)
jjy � xjj � jjf(x)jj

=
(y � x) � f(x)� (y � x) � C(x) � (x� a) + (y � x) � C(x) � (x� a)

jjy � xjj � jjf(x)jj

=
(y � x) � f(x)� (y � x) � C(x) � (x� a)

jjy � xjj � jjf(x)jj + C(x)
(y � x) � (x� a)
jjy � xjj � jjf(x)jj

With a = � � 1n+1 and C(x) =
Pn+1
i=1 fi(x)

1�(n+1)� ; the latter equation equals

jjh�(x)jj
jjf(x)jj

(y � x) � h�(x)
jjy � xjj � jjh�(x)jj +

C(x)

jjf(x)jj
(y � x) � x
jjy � xjj

=
jjh�(x)jj
jjf(x)jj

(y � x) � h�(x)
jjy � xjj � jjh�(x)jj +

Pn+1
i=1 fi(x)

jjf(x)jj
(y � x) � x
jjy � xjj � jjxjj

jjxjj
1� (n+ 1)�:

Observe furthermore that
Pn+1
i=1 fi(x)
jjf(x)jj � jjf(x)jj1

jjf(x)jj �
p
n+1jjf(x)jj
jjf(x)jj =

p
n+ 1 and

�
q

1
2 �

(y�x)�x
jjy�xjj�jjxjj �

q
1
2 : The former inequalities are standard, the latter

one follows immediately from the insight that y; x 2 Sn: The cosine of the
angle between (y � x) and x is therefore in between the values mentioned.
Finally,

q
1
n+1 � jjxjj � 1: So,

jjh�(x)jj
jjf(x)jj

(y � x) � h�(x)
jjy � xjj � jjh�(x)jj�

(y � x) � f(x)
jjy � xjj � jjf(x)jj 2

r
n+ 1

2

1

1� (n+ 1)� (�1; 1) :

This proves the statement of the lemma.

Proposition 5 Let y be an attractive ESE and let for all x 6= y su¢ ciently
near y :

(y � x) � h�(x)
jjy � xjj � jjh�(x)jj > "ESE ;

then by Lemma 4

(y � x) � f(x)
jjy � xjj � jjf(x)jj � jjh�(x)jj

jjf(x)jj "ESE �
r
n+ 1

2

1

1� (n+ 1)�

�
r
1

2
"ESE �

r
n+ 1

2

1

1� (n+ 1)�:

Hence, if "ESE�
p
n+ 1 1

1�(n+1)� > 0; then y must be an ESS as well. Then,
an upper bound for � to guarantee for the latter to hold is determined by
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"ESE >
p
n+ 1

1

1� (n+ 1)� ()
"ESEp
n+ 1

>
1

1� (n+ 1)� ()p
n+ 1

"ESE
< 1� (n+ 1)�()

p
n+ 1

"ESE
� 1 < �(n+ 1)�

() �
� p

n+ 1

(n+ 1)"ESE
� 1

n+ 1

�
> �() 1

n+ 1
� 1p

n+ 1"ESE
> �:

We immediately see the importance of "ESE here, the less the angle between
(y � x) and h�(x) is bounded away from zero, the more this upper bound
for � is decreased. Conversely, the more h�(x) points into the direction of
y, the less negative � may be. Now, take �0 = � 1p

n+1"ESE
, then the above

demonstrates that

(y � x) � f(x)
jjy � xjj � jjf(x)jj >

r
1

2
"2 �

r
n+ 1

2

1

1� (n+ 1)
�
� 1p

n+1"2

�
=

1

2

p
2

"22
"2 +

p
n+ 1

> 0:

So, for �0 = � 1p
n+1"ESE

the state y is both an ESS and an ESE. We hap-
pened to start the proof with taking y as an attractive ESE, starting the
other way around, i.e., assuming that y is an attractive ESS, will yield an
upper bound �00 = �

q
n+1
2"2ESS

expressed in terms of "ESS :

Proposition 6 Observe that for all interior states x; y

(y�x)�f(x) =
n+1X
i=1

(yi�xi)�fi(x) =
n+1X
i=1

yi � xi
xi

xifi(x) =
n+1X
i=1

yi � xi
xi

hREPi (x):

So, if y is an interior ESS, it is a TESS for the replicator dynamics and vice
versa. Let zi(x) =

yi�xi
xi
, then

(y � x) � f(x)
jjy � xjj � jjf(x)jj =

Pn+1
i=1

yi�xi
xi

� xifi(x)
jjy � xjj � jjf(x)jj

=

Pn+1
i=1 zi(x) � xifi(x)
jjy � xjj � jjf(x)jj =

Pn+1
i=1 zi(x) � hREPi (x)

jjy � xjj � jjf(x)jj

=
jjz(x)jj � jjhREP (x)jj
jjy � xjj � jjf(x)jj

z(x) � hREP (x)
jjz(x)jj � jjhREP (x)jj :

Clearly, for every U � int Sn numbers mU = minx2U mini xi and mU =
maxx2U maxi xi satisfying 0 < mU �MU exist such that for all x 2 U

mU jjy � xjj � jjz(x)jj =

vuutn+1X
i=1

�
yi � xi)
xi

�2
�MU jjy � xjj: (H)
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Furthermore, we obtain similarly

mU jjf(x)jj � jjhREP (x)jj =

vuutn+1X
i=1

x2i � f2i (x) �MU jjf(x)jj:

Therefore,

mU

MU

z(x) � hREP (x)
jjz(x)jj � jjhREP (x)jj �

(y � x) � f(x)
jjy � xjj � jjf(x)jj �

MU

mU

z(x) � hREP (x)
jjz(x)jj � jjhREP (x)jj

Hence, if y is an interior attractive ESS, we have that an open neighborhood
U exists containing y such that

"ESS �
(y � x) � f(x)
jjy � xjj � jjf(x)jj �

MU

mU

z(x) � hREP (x)
jjz(x)jj � jjhREP (x)jj :

So,
z(x) � hREP (x)

jjz(x)jj � jjhREP (x)jj �
mU

MU
"ESS :

De�ne the latter as "TESS ; then we have established a lower bound for the
cosine of the angle between z(x) and hREP (x) in Unfyg.

To prove the converse implication note that

mU

MU

(y � x) � f(x)
jjy � xjj � jjf(x)jj �

z(x) � hREP (x)
jjz(x)jj � jjhREP (x)jj �

MU

mU

(y � x) � f(x)
jjy � xjj � jjf(x)jj :

The proof of the converse implication is similar. If y is an interior attractive
TESS for the replicator dynamics, then

"TESS <
z(x) � hREP (x)

jjz(x)jj � jjhREP (x)jj �
MU

mU

(y � x) � f(x)
jjy � xjj � jjf(x)jj :

So,
(y � x) � f(x)
jjy � xjj � jjf(x)jj >

mU

MU
"TESS :

De�ne the latter as "ESS in this case. This completes the proof.

Proposition 7 Let z(x) =
�
y1�x1
x1

; :::; yn+1�xn+1xn+1

�
; then

z (x) � hq�REP (x)

=

n+1X
i=1

yi � xi
xi

xqi

 
fi(x)�

Pn+1
j=1 x

q
jfj (x)Pn+1

j=1 x
q
j

!

=

n+1X
i=1

(yi � xi)xq�1i

 
fi(x)�

Pn+1
j=1 x

q
jfj (x)Pn+1

j=1 x
q
j

!
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= (y � x) � h(q�1)�REP (x) +
n+1X
i=1

(yi � xi)xq�1i

 Pn+1
j=1 x

q�1
j fj (x)Pn+1

j=1 x
q�1
j

�
Pn+1
j=1 x

q
jfj (x)Pn+1

j=1 x
q
j

!

= (y � x) � h(q�1)�REP (x) + (y � x) � xq�1
 Pn+1

j=1 x
q�1
j fj (x)Pn+1

j=1 x
q�1
j

�
Pn+1
j=1 x

q
jfj (x)Pn+1

j=1 x
q
j

!
:

Here xq�1 =
�
xq�11 ; :::; xq�1n+1

�
: Hence,

(y � x) � h(q�1)�REP (x)
jjy � xjj � jjh(q�1)�REP (x)jj

=
z (x) � hq�REP (x)

jjz (x) jj � jjhq�REP (x)jj
jjhq�REP (x)jj

jjh(q�1)�REP (x)jj

� (y � x) � xq�1

jjy � xjj � jjh(q�1)�REP (x)jj

 Pn+1
j=1 x

q�1
j fj (x)Pn+1

j=1 x
q�1
j

�
Pn+1
j=1 x

q
jfj (x)Pn+1

j=1 x
q
j

!
:

Taking q ! 1, we have

z (x) � hq�REP (x)
jjz (x) jj � jjhq�REP (x)jj

jjhq�REP (x)jj
jjh(q�1)�REP (x)jj

�

(y � x) � xq�1

jjy � xjj � jjh(q�1)�REP (x)jj

 Pn+1
j=1 x

q�1
j fj (x)Pn+1

j=1 x
q�1
j

�
Pn+1
j=1 x

q
jfj (x)Pn+1

j=1 x
q
j

!
!

z (x) � hq�REP (x)
jjz (x) jj � jjhq�REP (x)jj

jjhq�REP (x)jj
jjh(q�1)�REP (x)jj

� (y � x) � x0
jjy � xjj � jjhq�REP (x)jj

 Pn+1
j=1 fj (x)

n+ 1

!
!

z (x) � hq�REP (x)
jjz (x) jj � jjh(q�1)�REP (x)jj

jjhq�REP (x)jj
jjh(q�1)�REP (x)jj

:

Note that

z (x) � hq�REP (x)
jjz (x) jj � jjh(q�1)�REP (x)jj

jjhq�REP (x)jj
jjh(q�1)�REP (x)jj

! (CEQ)

z (x) � hREP (x)
jjz (x) jj � jjhOPD(x)jj

jjhREP (x)jj
jjhOPD(x)jj =

(y � x) � f(x)
jjy � xjj � jjf(x)jj

jjy � xjj
jjz (x) jj

jjf(x)jj
jjhOPD(x)jj :

So, if q is su¢ ciently close to unity, then

z (x) � hq�REP (x)
jjz (x) jj � jjhq�REP (x)jj > "

implies that

z (x) � hREP (x)
jjz (x) jj � jjhOPD(x)jj > "(q) > 0 with "(q)

q!1! ":

Therefore
(y � x) � f(x)
jjy � xjj � jjf(x)jj

jjy � xjj
jjz (x) jj

jjf(x)jj
jjhOPD(x)jj > "(q):
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Given inequalities (H) in the proof of the previous result and the fact that
the orthogonal projection of f and f itself make an angle of at most 45
degrees, we have shown that for q ! 1, if y is an attractive TESS, the
conditions for an attractive ESS are ful�lled as well. The other implication
can be shown similarly, starting with the �nal inequality using the central
equality (CEQ).

Proposition 8 Note that for any interior saturated equilibrium y there
exists a neighborhood U 0such that for all x 2 Unfyg and all i 2 In+1 :
min

�
fi(x)

2p; p�2p
	
= fi(x)

2p: Hence,

h�;p�PRi (x) = xifi(x)� fi(x)2p �
�� xi

�(n+ 1)� 1

n+1X
j=1

fj(x)
2p:

Furthermore, let f (x)2p =
�
f1(x)

2p; :::; fn+1(x)
2p
�>
; then (y�x)�h�;p�PR(x) =

(y � x) � hREP (x) � (y � x) � f (x)2p + (y � x) � x
�Pn+1

j=1 fj(x)
2p

�(n+1)�1

�
: Consider

next

(y � x) � hREP (x)
jjy � xjj � jjhREP (x)jj

=
(y � x) � h�;p�PR(x)
jjy � xjj � jjh�;p�PR(x)jj

jjh�;p�PR(x)jj
jjhREP (x)jj +

(y � x) � f (x)2p

jjy � xjj � jjhREP (x)jj �

(y � x) � x
jjy � xjj � jjxjj

 Pn+1
j=1 fj(x)

2p

�(n+ 1)� 1

!
jjxjj

jjhREP (x)jj

=
(y � x) � h�;p�PR(x)
jjy � xjj � jjh�;p�PR(x)jj

jjh�;p�PR(x)jj
jjhREP (x)jj +

(y � x) � f (x)2p

jjy � xjj � jjf (x)2p jj
jjf (x)2p jj
jjhREP (x)jj �

(y � x) � x
jjy � xjj � jjxjj

 Pn+1
j=1 fj(x)

2p

�(n+ 1)� 1

!
jjxjj

jjhREP (x)jj :

For given � : jjh
�;p�PR(x)jj
jjhREP (x)jj

p!1! 1; moreover jjf(x)2pjj
jjhREP (x)jj

p!1! 0;Pn+1
j=1 fj(x)

2p

�(n+ 1)� 1
1

jjhREP (x)jj � n+ 1

�(n+ 1)� 1
fM (x)

2p

jjhREP (x)jj

� n+ 1
p
n+ 1

�(n+ 1)� 1fM (x)
2p�1 p!1! 0:

This means that

(y � x) � hREP (x)
jjy � xjj � jjhREP (x)jj

p!1! (y � x) � h�;p�PR(x)
jjy � xjj � jjh�;p�PR(x)jj :
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Hence, if the left hand side is larger than " > 0; the right hand side must be
larger than some positive lower bound, too, and vice versa.

Proposition 9 Let y be an attractive GESE w.r.t. Vy = (y�x)A�1(y)(y�
x): So, an open neighborhood of y containing it, and an "G > 0 exist such
that

(y � x) �A�1(y)hA(x)
jjy � xjj � jjA�1(y)hA(x)jj =

(y � x) �A�1(y)A(x)f(x)
jjy � xjj � jjA�1(y)A(x)f(x)jj > "G for all x 2 Unfyg:

Continuity of A implies that A(x)
x!y! A(y); hence an open neighborhood

U 0 � U containing y exists such that

1

2
"G <

(y � x) �A�1(y)A(y)f(x)
jjy � xjj � jjA�1(y)A(y)f(x)jj =

(y � x) � f(x)
jjy � xjj � jjf(x)jj :

So, y is an attractive ESS. The other implication can be proven similarly.
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