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Abstract

In a Small Fish War two agents interacting on a body of water
have essentially two options: they can �sh with restraint or without.
Fishing with restraint is not harmful; �shing without yields a higher
immediate catch, but may induce lower future catches.
Inspired by recent work in biology, we introduce into this setting

rarity value and Allee e¤ects. Rarity value means that extreme scarcity
of the �sh may a¤ect its unit pro�t �explosively�. An Allee e¤ect im-
plies that if the population size or density falls below a so-called Allee
threshold, then only negative growth rates can occur from then on.
We examine equilibrium behavior of the agents under the limiting

average reward criterion and the sustainability of the common-pool
resource system. Assuming �xed prices at �rst, we show that patience
on the part of the agents is bene�cial to both sustainable high catches
and �sh stocks. An Allee e¤ect can not in�uence the set of equilibrium
rewards unless the Allee threshold is (unrealistically) high.
A price mechanism re�ecting e¤ects of the resource�s scarcity, is

then imposed. We obtain a rather subtle picture of what may occur.
Patience may be detrimental to the sustainability of a high �sh stock
and it may be compatible with equilibrium behavior to exhaust the
resource almost completely. However, this result does not hold in gen-
eral but it depends on complex relations between the Allee threshold,
the dynamics in the (interactive) resource and price systems, and the
actual scarcity caused if the agents show no restraint.
Keywords: common pool resource systems, �sh wars, limiting average
rewards, sustainability, rarity value, Allee e¤ect, stochastic games

1 Introduction

Levhari & Mirman [1980] introduced The Great Fish War to model strategic
interaction between agents exploiting a natural renewable (or replenishable)

�The author thanks Sebastiaan Morssinkhof and Berend Roorda for suggestions and
discussions. Address: School of Management & Governance, University of Twente, POB
217, 7500 AE Enschede, The Netherlands. Email: r.a.m.g.joosten@utwente.nl
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resource. The game is a non-cooperative di¤erence game, or a stochas-
tic game (Shapley [1953]) with uncountable state and action spaces in the
interpretation of Amir [2003], but it inspired a vast literature of especially
di¤erential �shery games.1 The Great Fish War revealed that under various
regimes of strategic interaction, the agents over-exploit the natural resource
inducing e¤ects similar to the �tragedy of the commons�(Hardin [1968]).

The Small Fish War (Joosten [2007a]) is a game with frequency-depend-
ent stage payo¤s (Joosten [2003]), hence a stochastic game, and it has the
following setup. Two agents possess the �shing rights to a body of water,
and they have essentially two options, to �sh with or without restraint. Re-
strictions in practice may take various forms, e.g., on catching seasons, on
quantities caught, on technologies, e.g., boats, nets, allowed in catching.
Essential for the intuition is that unrestrained �shing yields a higher imme-
diate catch, but continued unrestrained �shing may lead to decreasing future
catches. Restrained �shing by both agents is assumed to be sustainable.

In the Small Fish War agents maximize their average catches over an
in�nite time-horizon. In such a setting, a Folk Theorem result holds, i.e.,
any pair of individually rational rewards can be supported by an equilib-
rium such that a certain course of action is to be followed yielding exactly
these rewards, called the equilibrium path. Any unilateral deviation from
this equilibrium path is punished by the player being �cheated�, i.e., the lat-
ter adopts behavior in order to give the cheater a signi�cant disadvantage
relative to what the latter would have obtained on the equilibrium path.

The �tragedy of the commons� does not seem inevitable, as Pareto-
e¢ cient outcomes can be sustained by subgame perfect equilibria. In a wide
range of the parameter space of the model, the more the catches deteriorate
due to over-�shing, the greater the gap between Pareto-e¢ cient outcomes
and the �never restraint�outcome. We never found that �perfect restraint�
is Pareto-e¢ cient in the same parameter range. Bulte et al. [1995] summa-
rizing Holden [1994], partly attribute the ine¤ectiveness of �shery policies
of the European Union on its biological rather than economic fundamental
basis. A careful analysis of the Small Fish War shows that economic im-
provement may be feasible beyond the level reached by bluntly adhering to
�biologically optimal�restrictions. This then, might be the basis of a policy
followed by the agents to select Pareto-e¢ cient equilibria.

Courchamp et al. [2006] propose an interesting price-scarcity mecha-
nism. Once a species becomes rare, its value may increase, this may induce
greater incentives to exploit the natural resource, leading to even greater
rarity, hence a higher value etc., etc. As a result, the population size or den-
sity may be pushed below a certain threshold beyond which only negative
growth rates exist. Such an e¤ect is called an Allee E¤ect in general, and

1For overviews and results on di¤erential and stochastic games, see e.g., Dockner et al.
[2001], Engwerda [2005], and e.g., Vrieze [1987], Thuijsman [1992], and Vieille [2000a,b].
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because this one is caused by humans, the term Anthropogenic is added.
Moreover, Courchamp et al. [2006] list a number of real-world cases in-

dicating that rarity value inducing the Anthropogenic Allee E¤ect (AAE)
is not an armchair-scientist�s oddity. Elsewhere, Berec et al. [2006] argue
that the hazards of rarity value may be even greater than is presently recog-
nized. Other Allee e¤ects are known to exist, which in isolation do not harm
a species at hand but in combination may a¤ect the population dynamics
in a disastrous way. Berec et al. [2006] state: �... we suggest that multiple
Allee e¤ects could markedly a¤ect the dynamics of the species concerned,
and that the importance of multiple e¤ects is concealed by the current lack
of information about their prevalence�.

Joosten [2007b] extends parts of the analysis of Courchamp et al. [2006]
to multi-player interactive decision making by imposing �rarity value�on a
Small Fish War. It was shown that patient agents too, may over-exploit the
resource. Lowest sustainable �sh stock may imply highest sustainable stage
payo¤s which may imply Pareto-e¢ cient outcomes which can be supported
by subgame perfect equilibria.

Here, we examine several aspects not considered by Courchamp et al.
[2006]. The latter contribution assumes implicitly that the agents only care
for the present, or discount the future so heavily that (the in�nite stream
of) future catches evaluated at each point in time, are su¢ ciently similar to
the prevailing, i.e., one-shot, situation. They also implicitly assume that the
in�uence of the agents is signi�cant in the sense that they can really harm
the �sh stock. Furthermore, to get into a scarcity region where prices indeed
explode to levels dwar�ng search costs (relatively) which induces very high
unit pro�ts, a region may have to be crossed in which pro�ts are very low or
even negative. Courchamp et al. [2006] o¤er little explanation how this can
be accomplished, because for negative unit pro�ts dominance relations in the
one shot game are reversed compared to the positive unit pro�t case. The
analysis in Courchamp et al. [2006] largely relies on considering unit pro�ts.
In this paper, we analyze total pro�ts, i.e., unit pro�ts times quantities,
averaged over an in�nite period by very patient agents in an interactive
decision making framework with bounded catching capacity.

We �nd that a Small Fish War under �rarity value�may very well exhibit
the environmental e¤ects sketched by Courchamp et al. [2006], i.e., �no
restraint�is the Pareto-e¢ cient equilibrium, or if �no restraint�would bring
about the AAE; then behavior which induces �sh stocks just above the
Allee threshold may be consistent with equilibrium behavior. However, we
also found parameter constellations leading to �almost perfect restraint�as
Pareto-e¢ cient equilibria, to �sh stocks which are near maximum level and
to rewards which are slightly higher than �perfect restraint�rewards.

Next, we review the small Fish War and then add an Allee e¤ect. In
Section 3 we examine the combined e¤ects of rarity value and the Anthro-
pogenic Allee E¤ect. Section 4 concludes with a discussion.
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2 A quick review and an Allee e¤ect

A Small Fish War is played by players A and B at discrete moments in
time called stages. Each player has two actions and each stage each player
independently and simultaneously chooses an action. We denote the action
set of player A (B) by JA = f0; 1g (= JB) and J � JA � JB: Action 1 for
either player denotes the action without or with very little restraint, e.g.,
catching with �ne-mazed net or catching a high quantity. The other action
denotes the action with some restriction, e.g., catching with wide-mazed nets
or catching a low quantity. The payo¤s at stage t0 2 N of the play depend
on the choices of the players at that stage, and on the relative frequencies
with which all actions were actually chosen until then.

Let hAt0 =
�
jA1 ; :::; j

A
t0�1
�
be the sequence of actions chosen by player A

until stage t0 � 2 , let hBt0 =
�
jB1 ; :::; j

B
t0�1
�
be de�ned similarly and let q � 0;

de�ne �t recursively for t � t0 by

�1 = � 2 [0; 1] ; and �t =
q + t� 1
q + t

�t�1 +
1

q + t

 
jAt�1 + j

B
t�1

2

!
: (1)

Taking q � 0 serves to moderate �early�e¤ects. Note that for the long run
the choice of numbers � and q is irrelevant.

At stage t 2 N, the players have chosen action sequences hAt ; hBt which
induce the number �t: The latter number determines the state in which the
play is at stage t: Slightly more formal, we say that the play at stage t 2 N is
in state st � �t. Observe that Eq. (1) implies that there are three possible
successor states st+1 to state st depending on the action pair chosen at t:

At each stage a bi-matrix game is played, and the choices of the players
at that stage determine their stage payo¤s. Let

A = B> =

�
a b
c d

�
:

Then, for given �t 2 [0; 1] at stage t 2 N, the stage payo¤s are given by

�t (A;B) =

�
a�t; a�t b�t; c�t
c�t; b�t d�t; d�t

�
:

Here, �t may be interpreted as a measure for the present �sh stock; if player
A chooses action 0 and B chooses action 1; A�s stage payo¤ is b�t and B�s
is c�t:We assume that �shing without restraint yields a higher catch in any
current stage than �shing with restraint, hence a < c; b < d. We assume
that two-sided catching without restraint yields higher immediate payo¤s
than two-sided catching with restraint, i.e., a < d. The unique stage-game
equilibrium is the strategy pair in which both players use action 1.
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Now, we will specify �t: At stage t 2 N, the play is in state st = �t, then
the normalized �sh stock is given by

�t � 1 + (1�m)
�

n2
n1 � n2

�n1t � n1
n1 � n2

�n2t

�
; (2)

where m 2 [0; 1] represents the minimal stock due to overexploitation by the
agents, and n1 > n2 > 1: So, (2) determines how the �sh stock deteriorates
from its maximum due to �shing without restraint.2 For increasing n1, the
deterioration of the �sh stock near its maximum, is less and less noticeable;
as a consequence the descent �later on�must be steeper, because the minimal
stock is m: For m = 1, we have a standard repeated game.

Below, (2) is visualized for m = 0:1; n2 = n1 � 1; and di¤erent values
of n1; the greater n1, the higher the corresponding curve. For the six lower
curves n1 lies between 2:2 and 5; the highest curve has n1 = 100: For the
latter value of n1, noticeable e¤ects on the �sh stock are to be found when
e.g., both agents �sh without restraint for approximately 90% of the time.

10 .7 50 .50 .2 50

1

0 .7 5

0 .5

0 .2 5

0

If both agents never show restraint, then the associated long run stage
payo¤s are dm; if they show perfect restraint, then the associated long run
stage payo¤s equal a: In the remainder we make the following assumptions.

Remark 1 �Never restraint� gives at most half the long-run stage payo¤s
associated with �perfect restraint�, i.e., dm � a

2 ; the sharpest decline of the

stock occurs at �� =
�
n2�1
n1�1

� 1
n1�n2 2

�
1
4 ;
3
4

�
:

The latter part seems reasonable as for large n1; n2 unrestrained �shing can
go on for quite a while without having a noticeable e¤ect on the environment.
Conversely, for n1 � n2 or �xed n1 and n2 # 1, the environment is extremely
sensitive to the slightest instance of �shing without restraint.

2�Real-world�alternatives to (2) can be �t in easily provided they are continuous.
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2.1 Strategies and rewards

At stage t, both players know the current state and the history of play, i.e.,
the state visited and actions chosen at stage u < t denoted by

�
su; j

A
u ; j

B
u

�
:

A strategy prescribes at all stages, for any state and history, a mixed action
to be used by a player. The sets of all strategies for A respectively B will
be denoted by XA respectively XB; and X � XA � XB: The payo¤ to
player k; k = A;B; at stage t; is stochastic and depends on the strategy-pair
(�; �) 2 X ; the expected stage payo¤ is denoted by Rkt (�; �) :

The players receive an in�nite stream of stage payo¤s during the play,
and they are assumed to wish to maximize their average rewards. For a given
pair of strategies (�; �) ; player k�s average reward, k = A;B; is given by

k (�; �) = lim infT!1

1
T

PT
t=1R

k
t (�; �) ; 
 (�; �) �

�

A (�; �) ; 
B (�; �)

�
.

It may be quite hard to determine the set of feasible (average) rewards
F , directly. Here, we focus on rewards from strategies which are pure and
jointly convergent. Then, we extend our analysis to obtain larger sets of
feasible rewards.

A strategy is pure, if at each stage a pure action is chosen, i.e., the
action is chosen with probability 1: The set of pure strategies for player k is
Pk, and P � PA�PB: The strategy pair (�; �) 2 X is jointly convergent
if and only if z 2 �m�n exists such that for all " > 0; (i; j) 2 J :

lim supt!1 Pr�;�
h���#fjAu =i and jBu =jj 1�u�tgt � zi+1;j+1

��� � "i = 0;
where �m�n denotes the set of all nonnegative m � n-matrices such that
the entries add up to 1; Pr�;� denotes the probability under strategy-pair
(�; �). J C denotes the set of jointly-convergent strategy pairs. Under such
a pair of strategies, the relative frequency of action pair (i; j) 2 J converges
with probability 1 to zi+1;j+1 in the terminology of Billingsley [1986, p.274].

The set of jointly-convergent pure-strategy rewards is given by

PJC � cl
��
x1; x2

�
2 R2j 9(�;�)2P\JC :

�

k (�; �) ; 
k (�; �)

�
=
�
x1; x2

�	
;

where cl S is the closure of the set S: The interpretation of this de�nition
is that for any pair of rewards in this set, we can �nd a pair of jointly-
convergent pure strategies that yield rewards arbitrarily close to the original
pair of rewards. With respect to jointly-convergent strategies, Eq. (2) and
the arguments presented imply that

lim
t!1

�t (aij ; bij) =

�
1 + (1�m)

�
n2

n1 � n2
Zn1 � n1

n1 � n2
Zn2

��
(aij ; bij);

where Z � z22 +
1
2 (z12 + z21) : So, the bi-matrices �t (A;B) �converge� in

the long run, too.
Let '(z) �

P
(i;j)2J zi+1;j+1 (limt!1 �t (aij ; bij)) : The interpretation of

'(z) is that under jointly-convergent strategy pair (�; �) the relative fre-
quency of action pair (i; j) 2 J being chosen is zi+1;j+1 and each time this
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occurs the players receive limt!1 �t (aij ; bij) in the long run. Hence, the
players receive an average amount of '(z): So, 
 (�; �) = '(z): Several al-
gorithms exist to compute PJC for linear two-person FD-games. For Small
Fish Wars, we designed a new, more general one. We refer to Figure 2 for
an illustration.3

(0.55,0.55)

  (3.3,1.925)

(1.925,3.3)

CP J C

P J C

\P J C

PE
(4,4)

  (4.23,3.88)

  (3.88,4.23)

Figure 1: Here, m = 0:1; n1 = 3; n2 = 2; a = 4; b = 3:5, c = 6, d = 5:5. The
red area denotes PJC ; CPJC is the convex hull of PJC : PE denotes Pareto
e¢ cient rewards in PJC ; clearly, (4; 4) is not Pareto e¢ cient.

2.2 Threats and equilibria

The strategy pair (��; ��) is an equilibrium, if no player can improve by
unilateral deviation, i.e., 
A (��; ��) � 
A (�; ��) ; 
B (��; ��) � 
B (��; �)
for all � 2 XA; � 2 XB: An equilibrium is called subgame perfect if for
each possible state and possible history (even unreached states and histo-
ries) the subsequent play corresponds to an equilibrium, i.e., no player can
improve by deviating unilaterally from then on. In the construction of equi-
libria for repeated games, �threats�play an important role. A threat speci�es
the conditions under which one player will punish the other, as well as the
subsequent measures.

We call v =
�
vA; vB

�
the threat point, where vA = min�2XB max�2XA


A(�; �); and vB = min�2XA max�2XB 
B(�; �): So, vA is the highest amount
A can get if B tries to minimize his average payo¤s. Under a pair of in-
dividually rational (feasible) rewards each player receives at least the

3We used Excel to compute and visualize more than 12000 jointly-convergent pure-
strategy rewards. The Excel �gure contains holes, the real set is dense in R2 as presented.
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threat-point reward. We can now present the major result of Joosten [2007]
generalizing the one in Joosten et al. [2003].

Theorem 1 Each pair of rewards in the convex hull of all jointly-convergent
pure-strategy rewards giving each player strictly more than the threat-point
reward, can be supported by a subgame-perfect equilibrium.

The following consequence of this result is illustrated in Figure 3.

Corollary 2 Let E0 = f(x; y) 2 PJC j (x; y) > vg; then each pair of rewards
in the convex hull of cl E0 can be supported by an equilibrium. Moreover, all
rewards in E0 can be supported by a subgame-perfect equilibrium.

 v

PE

E'

CP J C\E'

Figure 2: The blue area represents equilibrium rewards. The set of Pareto-
e¢ cient equilibria in E0 is denoted by a green line segment, note that v �
(1:925; 1:925) :

In the example used for Figures 1 and 2, Pareto-e¢ cient equilibria

� yield combined rewards which are slightly (1:4%) higher than the com-
bined �perfect restraint�equilibrium rewards (4; 4), yetmore than seven
times the combined �never restraint�rewards as a

dm =
80
11 ;

� induce play in which both players simultaneously show restraint for
about 85.6% of the stages; otherwise precisely one shows restraint.

Under Remark 1, the di¤erence between the �never restraint�rewards and
the symmetric Pareto-e¢ cient equilibrium rewards increases as m decreases,
whereas the di¤erence between the symmetric Pareto-e¢ cient equilibrium
rewards and the �perfect restraint�rewards decreases.
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2.3 Addition of an Allee e¤ect

We now introduce the notion of an Allee e¤ect into the small Fish War with
constant prices. The following quote may be found in Berec et al. [2006]:
�Allee e¤ects occur whenever �tness of an individual in a small or sparse
population decreases as the population size or density declines�. Courchamp
et al. [2006] explain: �Populations su¤ering from Allee e¤ects may exhibit
negative growth rates at low densities, which drives them to even lower den-
sities and ultimately to extinction�. Berec et al. [2006] also de�ne an Allee
threshold as the �critical population size or density below which the per capita
population growth rate becomes negative�.

Let therefore Th denote an Allee threshold measured in the same dimen-
sion as the �sh stock. We formalize the explanations above by

�t = 1 + (1�m)
�

n2
n1 � n2

�n1t � n1
n1 � n2

�n2t

�
if �s � Th for all s � t;

�s � �s�1
�s�1

< � < 0 and all s � s0 such that �s0 < Th: (3)

The second part of (3) does not specify what happens, but it captures the
Allee e¤ect in a rather general manner. For our purposes here, this will do,
we bounded

�s��s�1
�s�1

away from zero because then the population becomes

extinct in �nite time. Hence, if under strategy pair (�; �) the �sh stock at
any point in time drops below the Allee threshold, then limt!1 �t = 0; we
normalize the associated rewards to 
 (�; �) = (0; 0) and call them Collapse
Rewards, since the economic as well as the resource system break down.

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5

Series1

Figure 3: PJC form = 0:01 and Th = 0:1: Jointly-convergent pure strategies
rewards inducing �sh stocks below Th are normalized to (0; 0).

Figure 3 visualizes the set of jointly-convergent pure-strategy rewards
which can be achieved under the Allee e¤ect. The threat point is una¤ected
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by the Allee e¤ect, it is by the lower minimal �sh stock, though. The new
threat point is given by v � (1:7675; 1:7675) : So, the equilibrium rewards
are quite far removed from the Collapse Rewards, and Pareto-e¢ cient ones
even furthest. This means self-interested rational agents will behave in the
interest of the environmental system in order to guarantee high �sh stocks.
They stay far above the Allee threshold in doing so.

It should be noted that although the set of equilibrium rewards is un-
a¤ected by the introduction of the Allee e¤ect into the model, the set of
equilibrium strategies is reduced. All equilibria having an equilibrium path
inducing �sh stocks below the threshold at some point in time in the orig-
inal model, are not equilibria in the modi�ed setting as they will yield the
Collapse Rewards. The only way in which the Allee threshold has any in-
�uence on the set of equilibrium rewards for the model with the parameters
as presented, is to increase the threshold to at least 0:36. We have not seen
any actual numbers for Allee thresholds in the works studied for this paper,
but in our non-expert opinion, the latter number seems unreasonably high.

3 Rarity value and averaging

The Small Fish War and its extension presented here implicitly model a
situation in which agents sell their catches at a competitive market while
incurring �xed unit search costs, at least �xed with respect to the scarcity
of the resource in their �shing environment. Alternatively, if neither prices
on the market, nor search costs are �xed, then one can regard the model as
pertaining to a situation in which unit prices go up approximately in the
fashion as the unit search costs do.

In some cases, �shermen extract less and less in quantities, nevertheless
obtain higher and higher revenues. An �ongoing�real-world example of such
an anomaly might be the market for blue �n tuna, �sh stocks seem to have
decreased by 80 percent in the last �ve years, but prices have sky-rocketed
especially in the Far East (e.g., Veldkamp [2007]). In economics a range
of anomalies are known as Veblen and status goods (cf., e.g., Leibenstein
[1950]), but these are hardly ever linked to exhaustible resources, let alone
animal species facing extinction.

Courchamp et al. [2006] model and analyze the latter aspect, and cite
real-world cases in which prices for certain rare animals increase more than
search costs leading to the extinction of these endangered species. Below,
we have adapted a poignant �gure from Courchamp et al. [2006]. The
red curve represents the search costs of catching a certain unit of �sh as a
function of its availability, to be captured by the �sh stock � in our model
(on the horizontal axis). The explicit formula for the unit costs is given by

c(�) =
4

3:75

�
12� 12�+ 1

�1:5

�
;
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where c(�) is the unit costs given the (normalized) �sh stock �: The unit
costs increase as the species becomes rarer, i.e., � becomes smaller. The
unit prices, represented by the black curve, remain nearly constant between
� = 1 and � = 0:6, but for lower availability of the �sh stock they go up
sharply. The speci�cs of the formula for the unit prices are

p(�) =
4

3:75

�
4 + 0:75

1

�2

�
;

where p (�) is the unit price to be obtained on the market as a function of
the (normalized) �sh stock �: As unit pro�ts equal unit price minus unit
costs, the resulting unit pro�t curve, drawn in blue-green, is given by4

� (�) =
4

3:75

�
�8 + 12�+ 0:75 1

�2
� 1

�1:5

�
: (4)

It is readily con�rmed that � (1) = 4 and that lim�#0 � (�) does not exist.

10.750.50.250

25

20

15

10

5

0

fish sto ckfish sto ck

So, unit pro�ts decrease as �sh stocks decrease from maximal level, be-
cause the unit price remains almost constant, but unit search costs increase
steadily. If the �sh stock continues to fall below approximately 0:675, unit
pro�ts become negative, i.e., the agents would incur losses by catching �sh.
However, if the �sh stock would fall below approximately 0:228, then the
unit price driven by scarcity would exceed unit costs again. Moreover, in-
creasing scarcity causes the unit price to increase more than the unit costs
from then on. According to Courchamp et al. [2006] such a pro�t-scarcity
relationship spells doom for the survival of the animal species.

Below, we present a �gure (generated by Excel) in which the relation be-
tween unit pro�ts and the availability of �sh used to generate the adaptation
from Courchamp et al. [2006] above, is added to the functions governing the
computations for original Fish War.5 Since, a range in which unit pro�ts

4To allow easy comparison with the previous results, numbers have been scaled, i.e.,
unit pro�t is 4 if � = 1: The matrix entries have been divided by 4 to compensate for this.

5The set looks like a �sh, skeptics may obtain the Excel �le from the author on request.
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are negative exists, we �nd negative average rewards whereas in the origi-
nal game all rewards were positive. For �sh stocks with � < 0:228 pro�ts
increase steadily as �sh stock declines.
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Figure 4: PJC for the same parameters as before, but with pro�t-scarcity
relationship given by �. Perfect restraint yields (4; 4), but rewards (the true
set is dense) in the �beak�exist Pareto dominating (4; 4) signi�cantly.

We have the following result pertaining to the threat point v =
�
vA; vB

�
:

Lemma 3 For the parameters and the pro�t-scarcity relationship (4) we
have vA; vB � v = �0:70445:

Given v � v, the following is trivially valid in view of Theorem 1.

Corollary 4 Let E0 = f(x; y) 2 PJC j (x; y) > vg; then each pair of rewards
in the convex hull of cl E0 can be supported by an equilibrium. Moreover, all
rewards in E0 can be supported by a subgame-perfect equilibrium.

The Pareto optimal equilibrium seems to be �no restraint�which yields ap-
proximately (5:36; 5:36) and induces �sh stock equal to m = 0:1: Hence,
there is a clear price e¤ect which spells doom for the sustainability of high
catches, as it overcompensates the e¤ect of low catches.

3.1 Rewards, rarity value and alternative parameter choices

Having just found an example con�rming the scenario sketched by Cour-
champ et al. [2006], the natural question arises about the generality of such
events. In the remainder of this subsection we identify two factors which
appear to be decisive for the sustainability of the resource system under the
novel ideas regarding �rarity value�and the AAE inspired by Courchamp et
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al. [2006]. The �rst factor is related to the �actual harm�persistent unre-
stricted catching causes, i.e., the minimal stock level m. The second one is
that that unit pro�ts are not the real issue, but (long-term average) total
pro�ts are under the evaluation criterion chosen.

First, if we change the minimal stock level to m = 0:12, the �beak�
disappears. As in the original Small Fish War, the Pareto optimal equilibria
give rewards quite close to 4 and a large proportion of the catches must
be restrained. Several equilibrium rewards may be obtained in two di¤erent
ways. One way is to obtain the equilibria by both agents being fairly modest
in the propensity to catch without restraint, the other is to obtain the same
rewards by both agents catching without restraint quite ruthlessly.
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4

5
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Figure 5: PJC for m = 0:12 instead of 0:1: The �beak�disappears and the
Pareto optimal equilibria are near the perfect restraint equilibrium again.

Now, we change the equations giving the pro�t-scarcity function. Let,
alternatively, the unit pro�t curve be given by

�0 (�) = p(�)� c(�) = 4

3:75

��
4 + 0:75

1

�

�
�
�
12� 12�+ 1

�0:5

��
:

The connection to the previous formula is that the qualitative features of the
corresponding curves are similar. There is a slight di¤erence in levels and
the intersection points of the blue-green curve are somewhat di¤erent. The
most signi�cant di¤erence for the analysis is that for m = 0:1; the average
rewards to both agents �0:262 65:
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So, the limited catching capacities of the agents actually wards o¤ the
threat of extinction. Even if they were unlimited, the price e¤ects do not
dominate the quantity e¤ects su¢ ciently to obtain su¢ ciently high long-run
average pro�ts. The setting with regard to the limiting average rewards
changes as the �gure below indicates. Figures 4, 5 and 6 are similar ex-
cept for the beak shaped area representing rewards which Pareto-improve
signi�cantly with respect to the �perfect restraint�outcome.
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Figure 6: For m = 0:1 and �0, the beak-shaped area disappears.

We have generated similar visualizations of the sets of rewards for smaller
values of m:We found that for steadily decreasing values of m �no restraint�
yields steadily higher rewards. For the sake of comparison we toyed with
other parameters of the model too, but the �rarity value�e¤ect prevails in
similar fashions throughout the variants examined. A visualization is given
in Figure 7.
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Figure 7: PJC for m = 0:06 and all other parameters as before. The Pareto
e¢ cient equilibrium is (11:705; 11:705).

3.2 The Anthropogenic Allee E¤ect

As we have seen in the Small Fish War with constant prices to which an
Allee e¤ect was added, a subset of the jointly-convergent pure-strategy re-
wards is cut o¤. Since Allee e¤ects only occur if the �sh stock drops below
a certain threshold only lower left-hand-side rewards in PJC are a¤ected
there. However, due to e¤ects of �rarity value� the area which is cut o¤
under an addition of an Allee e¤ect may be expected to lie in the upper
right-hand corner. Hence, if this is con�rmed, the set of equilibria is likely
to be involved as well.

Comparing the Figures 4 and 8, we �nd that part of the �beak� has
disappeared in the latter as anticipated. The Anthropogenic Allee E¤ect
reduces the set of rewards situated in the �beak�. Since the upper bound
for the threat point is not a¤ected by the AAE, all rewards to the �north-
west�of v in Figure 8 are equilibrium rewards. Hence, the AAE eliminates
the unique Pareto-e¢ cient equilibrium reward in PJC along with a set of
rewards forming a considerable Pareto-improvements compared to �perfect
restraint�of the same model without the AAE.

4 Conclusions

Courchamp et al. [2006] introduce �rarity value�in a common-pool resource
system in which unit pro�ts of agents in an economic system dependent on
this resource, increase to very high levels as the availability of the species
goes to zero. There is a potential dangerous side to such a system as the
propensity to exploit the resource increases as its scarcity increases which
increases the propensity to exploit and so on. An important role is attributed
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Figure 8: Here, we have m = 0:1 and ThAAE = 0:11, other parameters
where taken as in the earlier �gures. The set of jointly-convergent pure-
stratgy rewards is cut o¤ in the �beak�.

to Allee e¤ects, i.e., once the population size or density of the resource falls
below a so called Allee threshold, only negative growth rates are possible.

For the sake of comparison, we generated and analyzed two variants of a
Small Fish War (Joosten [2007]). One variant takes unit pro�ts as �xed and
an Allee e¤ect is then added. Here, high sustainable yields can only be ac-
complished if the agents preserve the resource at stock levels well above the
minimum. The Allee e¤ect does not in�uence the set of equilibrium rewards
unless the Allee threshold is unrealistically high. Hence, self-interested ra-
tionality and the sustainability of the resource may go together very well.

The other variant incorporates �rarity value�and then the Anthropogenic
Allee E¤ect (AAE) is added. �Rarity value�implies that the highest sustain-
able unit pro�ts in the low-stock-level range are attained at the maximum of
the AAE threshold and the �no restraint�stock level. The analysis considers
the combined e¤ects of (decreasing) quantity and (increasing) unit pro�ts
evaluated in the long run.

It is by no means a general result that the rewards associated with this
maximum constitute even a Pareto-improvement over the �perfect restraint�
equilibrium. If it is not, we have a similar result as in the �xed unit prof-
its variant: self-interest and sustainability provide no tensions. However, if
these rewards associated with this maximum are su¢ ciently high, they con-
stitute a unique Pareto-e¢ cient equilibrium reward. Hence, the economic
system and the resource system have con�icting interests. Highest sustain-
able equilibrium rewards can only be accomplished by reaching the lowest
possible sustainable �sh stock on purpose. There is also a range of para-
meters which generate results which are in-between the two extremes just
mentioned. Only a careful analysis can reveal to which extreme case the
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model and its result belong. We have even found that in some parameter
constellations, one and the same Pareto-e¢ cient equilibrium reward may be
obtained in radically di¤erent manners. In one the reward is attained by
showing no restraint at all, in the other they show a rather high degree of
restraint.

In these respects, we add some novel aspects and new insights to the
frameworks of Joosten [2007a,b] as well as Courchamp et al. [2006].

5 Appendix

Proof of Lemma 3 There is not much to go by to compute the threat
point in FD-games. We have used a variety of techniques elsewhere (e.g.,
Joosten et al. [2003], Joosten [2007a,b,c]). So, we present a more modest
claim formulated in the statement of the lemma. We will show that player
A cannot obtain more than v against a �xed strategy � given by

�t =

�
1 if t = 1
j 2 JnfjAt�1g otherwise.

Observe that in the long run, �t ! 1
2 and �t !

1
2 (1 +m) : Then, the long-

run unit-pro�t under any strategy used by player A equals �t
�
1
2 (1 +m)

�
<

0: Hence, the stage payo¤s, i.e., the total pro�ts at that stage, are equal
to at most min

�
a
4 ;
b
4

	 �
1
2 (1 +m)

�
�t
�
1
2 (1 +m)

�
= v: This in turn implies

that the average rewards can not exceed v, either. So, the column player
clearly possesses a strategy to keep the row player�s rewards at at most v:
This obviously implies that vA � v:
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