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Strategic Interaction and Externalities: FD-games
and pollution®

Reinoud Joosten'

Abstract

To analyze strategic interaction which may induce externalities, we
designed Bathroom Games with frequency-dependent stage payoffs.
Two people regularly use a bathroom, before leaving they can either
clean up the mess made, or not. Cleaning up involves an effort, so this
option always gives a lower immediate utility than not cleaning up.

The immediate utility of using the bathroom depends on its condi-
tion: the cleaner it is, the higher the utility. The pollution at a certain
point in time depends on how often the players did not clean up in the
past. Furthermore, as the bathroom’s condition deteriorates, cleaning
up becomes more burdensome, leading to increasing disutilities.

We follow the analysis of repeated games and find that if the agents
are sufficiently patient, individually-rational rewards can be supported
by (subgame perfect) equilibria involving threats. In almost every such
equilibrium, the bathroom is cleaned up regularly.

JEL-Codes: C72, C73
Keywords: frequency-dependent stage payoffs, average rewards, re-
peated and stochastic games, Folk Theorems

1 Introduction

We study a social dilemma or social trap resulting from strategic interac-
tion which may induce (negative) externalities over time. Such a situation
may occur if an economic activity causes externalities which destroys its own
profitability, e.g., pollution of an environment exploited for recreational pur-
poses. Dawes [1980] states that two properties define a social dilemma: (a)
each individual receives a higher payoff for a socially defecting choice than
for a socially cooperative choice, no matter what other individuals in society
do, and (b) all individuals are better off if all cooperate than if all defect.
A social trap is a social dilemma, but with an effect in the time-dimension.

*The author thanks Ulrich Witt, Werner Giith, Georg von Wangenheim and an audi-
ence at the Max Planck Institute for Research into Economic Systems for suggestions.

TFELab/Dcpartmcnt of Finance & Accounting, School of Business, Public Adminis-
tration & Technology, POB 217, 7500 AE Enschede, The Netherlands.



Certain behavior leads to a small positive outcome which is immediate, and
a large negative outcome which is delayed (see Platt [1973]).

Bathroom Games describe rather stylized externality problems concern-
ing pollution. Each player has two actions ‘cleaning up’ or ‘not cleaning up’
in each stage game. The strategic interaction between players is such that
the latter action gives a strictly higher immediate payoff to either player
regardless of the choice made by the opponent. There also exists however,
strategic interaction on a different time-scale, through externalities which
become evident after some time. The less often the bathroom is cleaned up,
the lower the stage payoffs on all actions because of a degradation of the
bathroom’s condition. An essential feature of the game is that cleaning up
becomes more and more burdensome relative to not cleaning up, the more
polluted the bathroom is. The reason why this may occur is that the costs
of cleaning up increase in the presence of more pollution, but also emotional
factors such as disgust, indignation or irritation, may lead to decreasing
utilities. In more general settings an increase in pollution may pose more
dangers to the person(s) cleaning up.

Bathroom Games are special instances of games with frequency-depend-
ent stage payoffs (Joosten et al. [2003]). The idea behind this notion stems
from the work of the psychologist and economist Herrnstein on distributed
choice in which (experimental) stimuli changed depending on the choices
made by the experimental subjects (see e.g., Herrnstein [1997]). Until re-
cently, these effects had been examined primarily in ‘one-person games’ or
‘games against nature’ settings. The first contribution using the concept in a
(multi-person) strategic-interaction framework was Brenner & Witt [2003].

In Joosten et al. [2003] an extensive analysis of games with frequency-
dependent stage payoffs was undertaken. Although such games form a sub-
class of stochastic games introduced by Shapley [1953], the analysis of in-
finitely repeated games can very well be adapted to this type of games.
Joosten et al. [2003] derive several Folk-Theorem-like results. If the agents
are sufficiently patient, all individually-rational rewards can be supported
by an equilibrium involving threats. An individually-rational reward gives
a player at least the reward he can guarantee himself, regardless of his op-
ponent’s action.

Here, we demonstrate as well that certain, but not all, individually-
rational rewards can be supported by (subgame perfect) equilibria involving
threats. In almost every such equilibrium, the bathroom is cleaned up reg-
ularly, but not necessarily always. If one player were to punish the other
under a ‘grim-trigger strategy’, one of two situations may arise: either the
punishee cleans up forever while the punisher never cleans up, or nobody
ever cleans up again. Which situation then arises is determined by a para-
meter used in the model. The parameter indicates that, for identical levels of
pollution of the environment, cleaning up becomes more and more detrimen-
tal to the utilities derived for increasing values of this parameter. Replacing



‘erim-trigger’ strategies with strategies which are more forgiving in case of
unilateral deviations, and which increase the stream of stage payoffs to the
punisher, are shown to induce almost the same set of equilibrium rewards.

The organization of the paper is as follows. In the next section, we
present the model. In Section 3, we focus on feasible rewards in a Bathroom
Game, especially rewards connected to strategies with certain restrictions.
In Section 4, we present sets of rewards which can be connected to equilibria
with threats. Section 5 is devoted to reflections on the results found. The
Appendix contains proofs of the results presented.

2 The Bathroom Game

We start by giving an illustration of the problem to be analyzed and present
the main concepts as we go along. To keep our account tractable, we perform
the analysis on the one-parameter family of Bathroom Games below.

Example 1 The Bathroom Game. Aaron and Batsheva frequently use a
bathroom. After each visit, each has two options: to clean up the mess made or
not. The utility which either person derives from using the bathroom, depends
on its condition, the cleaner the bathroom the higher the utilities. Cleaning up
is burdensome, while the alternative requires no effort at all, moreover cleaning
up a tidy bathroom is less burdensome than cleaning up a soiled bathroom. The
following formalizes these ideas. The payoffs at stage t in state sy are given by:

6 —4pf' —4pf 6 —4pf —4p]

Als;) =
(s:) 4—ypf —ypf 4 —ypft —pP

= B(St)T.

The row (column) player is Aaron (Batsheva), ‘not cleaning up’ (‘cleaning up’) is
action 1 (2), A(st) (B(st)) denotes Aaron’s (Batsheva’s) payoff matriz in state St.
As usual the top row (left column) corresponds to Aaron’s (Batsheva’s) action 1.
The interpretation of the payoff matrices is that if Aaron uses action 1, i.e., he does
not clean up, and Batsheva uses action 2, i.e., she cleans up, the immediate payoff
to Aaron is 6 —4p —4pP and the immediate payoff to Batsheva is 4 —~ypi* —ypP.
FEach player’s stage payoff only depends on the own action.

The state in which the game is at stage t is denoted by sy = (,024, ptB) , where p{? 18
the relative frequency with which player k = A, B, played action 1 (‘not cleaning
up’) until stage t. More precisely, for k = A, B, let pf = w The bath-
room’s condition at stage t is measured by the average frequency with which both
players have not cleaned up until stage t, i.e., ,0;/4 + pF.

Since v > 4, stage payoffs to both players clearly decrease as the bathroom’s condi-
tion deteriorates. Moreover, the difference between the utilities for cleaning up and
not cleaning up increases as the condition of the bathroom deteriorates. Figure 1
illustrates the effects of the pollution on the stage payoffs. |



Formally, a Bathroom Game is played by two players at discrete moments
in time called stages. Each player has two actions and at each stage each
player chooses an action. The payoffs at stage ¢ € N of the play depend on
the choices of the players at that stage, and on the relative frequencies with
which all actions where chosen until then.

Let h{f,‘ = (jf‘, e j;i‘_l) be the sequence of actions chosen by Aaron until
stage ¢ > 2 and let ¢ > 0, then define p;* recursively for t < ' by

pi = pte0,1],
i1 A e A
. qq+tlpt—1 + ﬁ if jity =1, (1)
t +t—-1 A e A
qq+t Pi—1 if iy = 2.

Define p? for Batsheva similarly. Taking ¢ > 0 serves to moderate ‘early’
effects on the stage payoffs. Recall that j/*; denotes the action chosen by
Aaron at stage t — 1, hence, the number p{‘ converges in the long run to
the relative frequency with which he chose his first action before stage ¢,
regardless of the numbers p? and g¢.

At each stage a bi-matrix game is played, and the choices of the players
realized at that stage determine the stage payoffs to the players, as well as
the matrix game to be played at the next stage. With respect to the payoff
matrices (A (s¢), B (st)), we assume the following. Suppose the play is in
state s; = (pf,ptB) at stage t € N and action pair (¢,5) € J = JA x JB =
{1,2} x {1,2} is chosen, then Aaron receives a stage payoff equal to a;; (s¢)
the entry ij of matrix A (s;) and Batsheva receives b;; (s¢) . Entries a;; (s¢)
and b;; (s;) are jointly linear in ik, pB, ie.,

aij (st) = aij — aﬁpf —afppl, @)
bij (s¢) = big — Biipit — BEpP.

The coefficients in Eq. (2) are fixed and finite, and the following restrictions
are assumed to hold in any Bathroom Game for all i, j € {1,2}, k € {A, B} :

k k ko< ak
a1 > azj, biy > big, ag; > ay; >0, B = fi; = 0.

These restrictions ensure that in the stage games ‘not cleaning up’ always
strictly dominates ‘cleaning up’, i.e., always gives a strictly higher imme-
diate utility than the alternative. Furthermore, choosing an action pair in
a perfectly clean bathroom, i.e., p{‘ = pB = 0, yields higher utilities than
choosing the same action pair for higher values of pf* and pZ. This reflects
the idea that a deteriorating condition of the bathroom decreases utilities.

The final typical feature of a Bathroom Game is that the more polluted
the bathroom is, the bigger the discrepancies between the utilities of ‘clean-
ing up’ and ‘not cleaning up’ become. Aaron and Batsheva may differentiate
between who made the mess, even though objectively the condition of the



bathroom might be the same.! Figure 1 illustrates the effects of the condi-
tion of the bathroom on the stage payoffs. Note that ‘cleaning up’ does not
involve cleaning up the entire bathroom, only a limited effort is made.

(-2.12)

Figure 1: The feasible stage payoffs for the Bathroom Game with v = 7.
The arrows indicate that the stage payoffs decrease as the condition of the
bathroom deteriorates.

(-10,-10)

3 Strategies and rewards

At every stage t, both players know the current state and the history of play,?
i.e., the state visited and actions chosen at each stage before. A strategy
prescribes at all stages, for any state and history, a mixed action to be used
by a player. The sets of all strategies for Aaron respectively Batsheva will be
denoted by X4 respectively XZ, and X = X4 x XB. The (stochastic) payoff
to player k, k = A, B, at stage t, depends on the strategy-pair (7,0) € X,
the expected stage payoff is denoted by R} (7,0) .

The players receive an infinite stream of stage payoffs during the play,
and they are assumed to wish to maximize their average rewards. For a given
pair of strategies (m,0), player k’s average reward, k = A, B, is given by
¥ (m,0) = liminfr_, % erzl R} (m,0); v (m,0) = (fyA (m,0),~P (m,0)).

! Many people are considerably more annoyed by the mess made by others!

? Allowing for instance that Aaron can not observe Batsheva’s action(s) directly, adds a
layer of reality, but also several layers of complexity. For repeated games with incomplete
information, see e.g. Hart [1984], Forges [1986].



It may be quite hard to determine the set of feasible (average) re-
wards F', directly. It is not uncommon in the analysis of repeated or sto-
chastic games to limit the scope of strategies on the one hand, and to focus
on rewards on the other. Here, we will do both, we focus on rewards from
strategies which are pure and jointly convergent. Then, we extend our analy-
sis from there to obtain more feasible rewards.

A strategy is pure, if at each stage a pure action is chosen, i.e., the
action is chosen with probability 1. The set of pure strategies for player k is
Pk, and P = P4 x PE. The strategy pair (m,0) € X is jointly convergent
if and only if z € A™*™ exists such that for all e > 0 :

#{jd=i and jB=j| 1<ust}
t

limsup, ., Prro {

zi5| > 6} =0 for all (¢,7) € J,

where A™*" denotes the set of all nonnegative m X n-matrices such that
the entries add up to 1, hence z; € [0,1]; Pry, denotes the probability
under strategy-pair (7, ). JC denotes the set of jointly-convergent strategy
pairs. Under a pair of jointly-convergent strategies, the relative frequency of
action pair (i,j) € J converges with probability 1 to z;; in the terminology
of Billingsley [1986, p.274]. Moreover, the empirical distribution of the past
play by Aaron under such a pair of strategies converges with probability 1 to
the vector given by the row-sums of the matrix z. Hence, pi' converges with
probability 1 to Z4, i.e., the sum of the first row of the matrix z. Similar
remarks hold with respect to the other player.
The set of jointly-convergent pure-strategy rewards is given by

PIC =l {(a1,4) € B?| Sgorepnge : (1" (1,0) 7" (7,0)) = (a1,22)}

where ¢l S is the closure of the set S. The interpretation of this definition
is that for any pair of rewards in this set, we can find a pair of jointly-
convergent pure strategies that yield rewards arbitrarily close to the original
pair of rewards. P7C can be determined rather conveniently, as we will
show now. With respect to jointly-convergent strategies, Eq. (2) and the
arguments presented imply that lim; .o (aij (s¢), b5 (s¢)) = (ai; — af}ZA —
ongB, bij — ﬁijA - ZJ?ZB). So, the matrices A (s¢), B (s;) ‘converge’ in
the long run, too.

Let (,D(Z) = Z(i,j)GJ Zijg (aij — agZA — O[Z»B;»ZB, bij — 6;3214 — BZB;ZB) .
The interpretation of ¢(z) is that under jointly-convergent strategy pair
(m,0) the relative frequency of action pair (Z,j) € J being chosen is z;; and
each time this occurs the players receive (a;j (s¢), b5 (s¢)) in the long run.
Hence, the players receive an average amount of ¢(z). So, v (7,0) = ¢(z).

The following result has been proven in Joosten et al. [2003] for games
with frequency-dependent stage payoffs. Less general ideas had been around
earlier for the analysis of repeated games with vanishing actions (cf., Joosten
(1996, 2001], Schoenmakers et al. [2002]).



Lemma 2 In the Bathroom Game, we have PIC = |, o amxn p(2). More-
over, each pair of rewards in the convex hull of P is feasible.

This lemma provides a convenient algorithm to determine P7¢ and its con-
vex hull. Below, we have depicted the sets PJ€ for different cases with
respect to the parameter +.

Figure 2: The sets of jointly-convergent pure-strategy rewards for v = 4
(left), v = 6 (middle) and v = 10 (right).

To give the intuition on how to construct strategies which yield a convex
combination of both rewards, we provide the following example.

Example 3 Note that in Figure 2 (where v = T) no strict convex combination
of rewards (—3,2) and (4,4) can be achieved by a pair of jointly-convergent pure
strategies. Let (m,0) be given by

Wt:Ut:(%,%) fort=1,2
T=0p =2 fort >3 if j{t = jf and j§' = 7
=2, 00 =1 fort >3 otherwise.

At the first two stages, each player randomizes with equal probability on both ac-
tions. Then, the play continues with probability i with ((2,2),(2,2),(2,2),...)
and with the complementary probability with ((2,1),(2,1),(2,1),...), because the
event j{‘ = le and jf‘ = jQB has probability i. Furthermore, the first sequence
gives long run average payoffs of (4,4) and the second one (—3,2) . Hence, 7y (7, o)
yields rewards ;11 (4,4) + % (=3,2) . Randomizing over two periods in this manner

7



and proceeding according to the outcome similarly gives all convex combinations of
(—3,2) and (4,4) being multiples of i Moreover, following the same procedure for
a randomization of three periods we can generate all multiples of %; in general, for

T
T periods one gets all multiples Of% .

Joosten et al. [2004] provide a constructive method to obtain pure-strategy
rewards which may be outside of the convex hull of P7€. In order to present
an analogy, we first establish the players’ worst outcomes in PJ€.

Lemma 4 The worst outcome in PIC for a player is min{—2,4 —~+ ﬁ}

The intuition behind the constructive method mentioned before the lemma
is as follows. For v = 7, let 7! = (1,1,1,...) and o' = (2,2,2,...); simi-
larly, let 72 = (2,2,2,...) and 02 = (1,1,1,...). Then, (7‘(1,0'1) = (2,-3)
and 7(7r2,02) = (—3,2). Now, construct a pair of strategies (m,c) such
that the average stage payoffs approach (2,—3) by playing according to
(71'1,0'1), next by playing according to (7‘(2,0'2) to approach (—3,2) more
closely, followed by playing according to (7T1, 01) again to approach (2, —3)
even more closely, and so on. Then, clearly (7,0) is not jointly-convergent
and liminfy .00 & 37 RY (7,0) < =3, k = 1,2. Obviously, (—3, —3) is not
in the convex hull of PI€.

(-10/3,-10/3)

Figure 3: An illustration for v = 7. Left: the set of jointly-convergent pure-
strategy rewards P7¢; middle: the convex hull of P7C; right: the set P’.

Theorem 5 Let w € R? be the pair of worst outcomes in PIC, and let P’
be the convex hull of w and PIC€. Then every reward in P' is feasible.



4 Threats and equilibria

The strategy pair (7*,0%) is an equilibrium, if no player can improve by
unilateral deviation, i.e.,

FA (1%, 0%) > N2 (1, 0%), A8 (1%, 0%) > 4B (n*,0) for all T € X4, 0 € XB.

An equilibrium is called subgame perfect if for each possible state and
history the subsequent play corresponds to an equilibrium, i.e., no player
can improve by deviating unilaterally from then on. In the construction of
equilibria for repeated games, ‘threats’ play an important role. A threat
specifies the conditions under which one player will punish the other, as well
as the subsequent measures.

We call v = (UA, UB) the threat point, where v = min, ¢y max, ¢ ya
YA (7, o), and vP = min; ¢ y4 max,e s 72 (7, 7). So, v4 is the highest amount
Aaron can get if Batsheva tries to minimize his average payoffs. Under a pair
of individually rational (feasible) rewards each player receives at least the
threat-point reward. We have the following result for the Bathroom Game.

A

Lemma 6 We have v = (max{—2,4 — v}, max{(—2,4 — ~}).

Example 7 Consider the pair of strategies in which Aaron and Batsheva clean up
alternately, starting with Aaron. This implies that ,0‘4 = pB = % in the long run.
As Batsheva’s long run stage payoffs (fory = 7) are alternately 6 —4 (pA + pB) =
2and4 -7 (,OA + pB) = —3, her average stage payoffs converge to —%. A similar
statement holds for Aaron.

Suppose Aaron were to deviate unilaterally, and clean up exactly thrice every four

stages. Then, pA = i and pB = % in the long run. Aaron then receives once
6—4 (i + %) = 3 and thrice 4 — 7 (Z + %) = —% in every four stages. This leads
to average stage payoffs ofi -3 —l—% . —% = —1% > —%. Hence, Aaron can improve

unilaterally against Batsheva’s strategy.

Consider however, the following pair of strategies. Aaron and Batsheva clean up
alternately, starting with Aaron, as long as both players stick to cleaning up alter-
nately. If one player deviates from this course of action, the other player is never
to clean up again. This pair of strategies leads to exactly the same sequence of play:
on odd stages Aaron cleans up and on even stages Batsheva cleans up, inducing
rewards —% to both. If Aaron were to deviate only once, then Batsheva would ‘pun-
1sh’ him by never cleaning up again, and Aaron’s reward is at most —2. Hence,
Aaron can not improve unilaterally.

The ‘threat’ is that Batsheva will never clean up again if Aaron deviates even once
from cleaning up on odd-numbered stages. Observe that in such an equilibrium
involving threats, the play is such that the threats are never carried out. |

To present the general idea of the next result of Joosten et al. [2003],
we adopt terms from Hart [1985] and Forges [1986]. First, there is a ‘master



plan’ which is followed by each player as long as the other does too; then
there are ‘punishments’ which come into effect if a deviation from the master
plan occurs. The master plan is a sequence of ‘intra-play communications’
between the players, the purpose of which is to decide by which equilib-
rium the play is to continue. The outcome of the communication period is
determined by a ‘jointly controlled lottery’, i.e., at each stage of the com-
munication period the players randomize with equal probability on the first
two actions; at the end of the communication period one sequence of pairs
of action choices materializes. Detection of deviation from the master plan
after the communication period is easy as both players use pure actions on
the equilibrium path from then on. Deviation in the communication period
by using another action than one of the first two actions can also be easily
detected, but deviation by using an alternative randomization on the first
two actions is impossible to detect. It can be shown that no alternative
unilateral randomization yields a higher reward. So, the outcome of the
procedure is an equilibrium. For more details, we refer to Joosten et al.
[2003]. We restate here the major result which applies to general games
with frequency-dependent stage payoffs.

Theorem 8 (Joosten, Brenner & Witt [2003]) Each pair of rewards in the
convex hull of all individually-rational pure-strategy rewards can be supported
by an equilibrium. Moreover, each pair of rewards in the convex hull of all
pure-strateqy rewards giving each player strictly more than the threat-point
reward, can be supported by a subgame-perfect equilibrium.

Corollary 9 Let E' = {(4 —7,4- 7) ) (4 - 2) 5 (274 - 7) ) (47 4)} for S
[476} and EI = {(_27 _2) ’ <_27 -2 + w) ) (_2 + Wa _2> 7(474)}
for v > 6 Then, each pair of rewards in the set E' can be supported by an

A

equilibrium. Moreover, all rewards in E' giving Aaron more than v* and

Batsheva more than v® can be supported by a subgame-perfect equilibrium.

5 Interpretations and reflections

The final result of the previous section can be seen as a Folk Theorem.
Appreciation for such results varies widely among the profession. On the
negative side we find Gintis [2000] for instance, where it is stated (p.129):
‘By explaining practically anything, the model in fact explains nothing’.
Gintis then expresses a cautious preference for Pareto-efficiency as a selec-
tion criterion, as well as a preference for more realistic punishments in case
of unilateral deviation from an equilibrium path, which should be more for-
giving, e.g., allow for repair. On the positive side, Osborne & Rubinstein
[1994] point out that equilibria of the infinitely repeated game exist which
are Pareto-superior to any equilibrium of the associated one-shot game.

10



(4.4)

(2,-3)
(-10/3,-10/3)

Figure 4: Corollary 9 illustrated for v = 7. The shaded area represents P’;
all rewards in E’ are equilibrium rewards, all rewards in its interior can be
supported by a subgame perfect equilibrium.

An outcome X is called Pareto-superior to outcome Y, if under X at
least one agent is better off than under Y, while all others are equally well-
off. A feasible outcome is Pareto-efficient if there exists no feasible outcome
which is Pareto-superior to it. Here, it is quite meaningless to compare
equilibrium rewards of the infinitely repeated game with equilibrium payoffs
of a stage game, because we have infinitely many stage games. Therefore,
we will apply these notions exclusively to rewards in the infinitely repeated
game. The unique Pareto-efficient outcome is the pair of rewards (4,4) and
it is also an equilibrium reward. What is particularly striking is that these
rewards can only be obtained if the Pareto-inferior action in the stage games
is played with a long-run relative frequency going to one by both players.
Moreover, for every pair of equilibrium rewards except (4,4) an outcome can
be found which is Pareto-superior to it, but which can not be supported by
an equilibrium.

From a strictly theoretical point of view no value judgement seems possi-
ble on the issue of punishing unilateral deviations. Threats and punishments
are quite possible in repeated games, removing these options seems artificial.
However, the idea of punishments is hard to sell to the more practically ori-
ented, despite the fact that in equilibrium threats are never acted out. The
type of punishment which is often used in the construction of equilibria, is of
the grim-trigger type (see e.g., Van Damme [1991]). Under such a strategy
one deviation, even an inadvertent one, triggers the grimmest punishment

11



possible inducing the threat-point reward to the player being punished, no
matter what the consequences are for the rewards of the punisher. Of course,
subgame-perfectness aims to take away this objection. After a unilateral
deviation, the play is to continue with an equilibrium giving the deviating
player a lower reward. Often however, the threat-point rewards coincide
with equilibrium rewards, so the objection may still be present.

The richness of the strategy space allows us to accomodate however,
several of the objections connected to equilibria involving threats. The fol-
lowing shows that we can construct subgame-perfect equilibria which in case
of a unilateral deviation are ‘forgiving’, i.e., they allow (not too many) de-
viations, and if a deviator is punished the player punishing is better off
afterwards. However, this does not reduce the set of equilibria significantly.

Theorem 10 For any pair (a,b) € int (E'N PJC) a subgame-perfect equi-
librium (m,0) exists yielding rewards (a,b) which induces play such that

e if Aaron deviates from the equilibrium path ‘too often’, then play pro-
ceeds according to an equilibrium such that Aaron receives strictly less
than the amount a but more than v and Batsheva receives at least b;

e if Batsheva deviates from the equilibrium path ‘too often’, then play
proceeds according to an equilibrium such that Batsheva receives strictly

less than b but more than vB and Aaron receives at least a.

The ‘too often’-s are well specified in the proof. The convexification result
of Joosten et al. [2003] can also be applied to int (E' N P7C).

6 Appendix

Proof of Lemma 4. We only prove the case w? = min{—2,4 — vy + ﬁ}
Aaron’s rewards for a given pair of jointly-convergent pure strategies are

Rip,o)=(y—4)p*+(yvo—7v—4o+2)p+ (4—9).

Here, p = limy_, o0 pf and ¢ = limy_, p2. As OR(p,p)/0p = (7 —4) p—7 < 0,
¢ = 1 minimizes Aaron’s reward. Observe that OR(p,1)/0p < 0 for p < ﬁ and

OR(p,1)/0p > 0 for p > ﬁ and 9°R(p,1)/9%p = 2(y —4) > 0 for v > 4.

So, R(p, ¢) is minimized for p = min {1, ﬁ} and ¢ = 1. Then straightforward

substitution yields the statement of the case. |

Proof of Theorem 5. We will prove the theorem for v = 7 and for w. The
general case is similar but notationally very involved. From the previous proof we
know that (—3%, %) is reached for strategies such that p = % and p =1, (%, —3%)
is reached for strategies such that p = 1 and ¢ = % Our proof is based on the

12



construction of a pair of pure strategies (7, 0) under which for certain stretches of
play the average payoffs converge to a neighborhood of (—3%, %) , alternated by
stretches of play where the average payoffs converge to (%, —3%) .

First, we introduce a couple of convenient notations, where the notation involv-

ing ™ always refers to Aaron’s stmtegy1 and o always to Batsheva’s. Let m! =

ol = (1,1,1,1,1,1,...), and 73 = o3 = (1,2,2,1,2,2,...). Furthermore, let
pr = pt + p7, and let p? (t), uP (t) denote the average stage payoffs for Aaron
respectively Batsheva during the first ¢ stages. Take € € (0, %) . Now, we construct
(7, 0) as follows.

73, 0) il | (t) + 33| <e followed by
mlo7) bl [pB(t) + 34 <5 followed by
(m,0)= 73,00) till | (t) + 35| < £ followed by
mlo3) bl [pB (t) + 34 <2 followed by

Given this pair of strategies, define sequence t1 < to < t3 < t4 < ... where
for odd (even) k denotes the first stage for which p? (t) € [-3% — £, -34 + %]
(,UB (t) € [—3% - %, —3% + %]) SO, limk_)oo (/LA (tgk) N MB (tgk)) = (
limy oo (14 (toks1) , 18 (tani1)) = (=3, 2) . Hence, v (m,0) < (-3
Take n > 0 be odd, let t* = t,, and t** = t,, 11, and let integer k € [1,¢™* —t* —1].
We will now show that Aaron’s average rewards do not decrease.

—pA (k) + (6 - 4Pt*+k+1)

Aygx Ak
tFtk+1) — u(t*+k) = >
Pk + 1) — p (7 +k) o >
6—pA(t*+k)—4-% B 2 At + k)
tr+k+1 o t*+k+1

This implies that p?(t* + k) > —3%.
Furthermore, the ‘expected change’ in average payoffs for Batsheva is

E{P(t +k+1)—pP(t*+k)}

(=HP(t + k) + 3 (6= 4ppyui1) + 3 (4= TP 141))
t*+k+1

(1_51 — Pt + k) - 6pt*+k+1) _ (_1_:? — Bt + k) + 6Vk)

- - I

t*+k+1 t*+k+1

where vp, = %—ptmrkJrl. It can be easily verified that v > 0 and that vy, is strictly
decreasing in k € [k*,t** —t* —1]. So, E{pP(t* + k+1) — pP(t* + k)} <0
if and only if u (t*+k) > —23 +6v,. This implies that {;” (t)}it* is decreasing
but bounded away from —%. Therefore, B (t* + k) > —3%.

The case n > 0 and n is even, is similar because of the symmetry. So, liminf;_,
pA(t) = liminfy o0 pP(t) = —33. Hence, 7 (7,0) = (—33,-31). [

13



Proof of Lemma 6. We only prove the case v4 = max{—2,4 — v}. If Aaron
always plays his first action, then his stage payoffs converge to (2 — 4p,§ ) in the
long run and his rewards are at least —2; if he always plays the other action his
stage payoffs converge to (4 — *y,otB ) in the long run and his rewards are at least
(4 — ) . Now, Batsheva can keep Aaron’s maximal reward at max{—2,4 —~} by
playing action 1 forever. In that case, his long run stage payoffs are (2 — 4,0;/4) for
action 1, and (4 o ’ypf) for action 2. Hence, Aaron’s long run average payoffs
converge to pf' (2= 4p!) + (1= p) (4= —70f") = (v = 4) (pf')* =2 +4 1.
It may be readily confirmed that on [0, 1] this function has a maximum of (4 — )
for p{f‘ =0if4 <y <6, and -2 for p{f‘ = 1if v > 6. So, Aaron’s rewards are at
most max{—2,4 — 7v}. Therefore, v* = max{—2,4 — v}. [ |

Proof of Theorem 10. Let (z,y) be a pair of rewards in the interior of F’.
Then, numbers £ < < 7 and y < y < ¥ exist such (z,79), (_, ) € FE'. So,
equilibrium strategies (7%, o¥), (7T— (ry), (7T“3 (r—) exist such that v (7%,0Y) =
(z,y), v (7TE Ug) = (z,7),7 (71'5, O'E) ( ,y) Let T* > 0 denote the length of
the communication period of strategy pair (7%, 0¥). For T > 1, let AD2 (T) =
M, ADB(T) = w Deﬁne (m,0) as follows:

if for some T' > T*: ADZ(T') > 1/V/T'
and ADZ(T") > ADE,(T")

if for some T" > T*: ADE,(T") > 1/VT"
and ADE,(T") > ADA.(T")

otherwise.

<

x
Tt =Ty Ot =0y

I
e

R ok

¢
Ty = 7Y oy =0

Then, v (7,0) =7y (7%,0¥) = (x,y), because in the long run deviations from the
equilibrium path of (7%,0Y) go to zero in relative frequency. Now, (7,0) is an
equilibrium because if, e.g., Batsheva deviates more than Aaron does such that for
some T" : ADE, (T”) > 1/+/T", then the play continues according to equilibrium
(7@, 02) . Batsheva gets y < y in that case, while Aaron receives T > x. A similar
statement holds for Aaron as well. Hence, neither player can improve his rewards
by deviating unilaterally as described. |
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