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1. Introduction 

 
In economics simulation models are used quite a lot to carry out mathematical experiments. 
However, the specification of the parameter set with which to run these simulations is, in 
general, quite an adventure into the unknown. Criticism is easily found with the procedure, as 
it is difficult to justify why to choose one specification of parameters and not another - 
especially if the results found in the simulation models are striking. Then, the audience cannot 
help but think that there has been quite some arbitrary trial and error going on to achieve this. 
To avoid this impression, we suggest to empirically calibrating simulation models in a way 
that makes their results more acceptable. However, compared with models of mainstream 
economics that usually can be solved analytically, simulation models have only recently been 
opened to empirical data. It is fair to say that also analytically solvable models have quite 
some problems concerning the integration of empirical data (cf. Kydland/Prescott, 1996). 
These problems also emerge when working with simulation models. 
 
We will suggest two ways of underpinning the empirical calibration of simulation models 
methodologically. First, we suggest combining the empirical underpinning of the assumptions 
with the empirical check of the implications. To this end, we build on two strands of literature 
in simulation modelling. The one strand is concerned with microsimulations, where empirical 
knowledge is used to set up the simulation model (cf, e.g., Citro & Hanushek 1991). The 
other one is the statistical approach under the label of Bayesian inference, where empirical 
data is used to test the simulation model (cf. Zellner, 1971). Using different two different data 
sets in this way to confront assumptions as well as implications with reality would also help 
to improve the way every model deals with empirical data and is not restricted to simulation 
models. 
 
The second way we suggest underpinning the empirical calibration of simulation models 
methodologically lies in the very nature of simulation models. In contrast to analytically 
solvable models simulation models face a severe problem and that is that uncertainty is at 
their very heart.1 While most analytically treated models in the economic literature describe 
deterministic processes, most simulation models deal with stochastic processes. Therefore, the 
solutions are contingent, i.e. subject to a combination of chance and necessity. How to deal 
with chance and necessity within simulation models is crucial when modelling both aspects 
that are of course intertwined. It becomes even more difficult to deal with these two aspects 
when simulation models have to be empirically calibrated, because historical events take only 
place once and one has to identify the characteristics a number of historical events have in 
common and the characteristics that emerge from chance in the data.  
 
We suggest using Critical Realism as methodology, because it helps to categorize empirical 
events actually taking place and to determine the underlying structural driving forces. We will 
show that this approach is the most promising way to use simulation models for inferring 
general knowledge about the features of a set of systems or dynamics. By this simulations 
become a more interesting and reliable tool for understanding economic processes and 
developments. To show how empirical data can be used to make simulation models more 
widely acceptable and applicable, we first look into what one has to take into consideration 
when modelling the real world by way of simulation models (Section 2.). Then we show 
particularly how the methodological approaches of Positivism and Critical Realism can be 
used for economic modelling (Section 3.). Based on this discussion we explore into the 
question of how Critical Realism can serve to examine the features of economic processes 

                                                 
1 Please note that we do not consider mainstream models that use simulations as a mathematical tool to 
solve underdetermined equation systems as simulation models here. For a more detailed discussion of 
the kind of simulation models we consider see Section 3.1. 
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with the help of empirically founded simulation models (Section 4.). We conclude with a 
brief summary and an overview of additional questions one would like to answer in the 
context of the empirical calibration of simulation models (Section 5.). 
 

2. Modelling the Real World 

2.1 Elements of Models 

 
To model the real world, theories use different elements and abstract from what is actually 
going on in the part of reality they want to describe, explain, or prognosticate. Sometimes the 
term “model” is defined as being a “theory” that is expressed in equations. As this leads to a 
couple of questions that are not interesting in the context of our analysis,2 we use the terms 
“model” and “theory” synonymically here. The most important elements of models are 
premises, definitions, logical sentences, causal relationships3 as well as data. Every model 
starts from premises that limit the area of application of the model, e.g. concerning time, 
place, agents involved etc. Not all premises are made explicitly. One famous premise, that is 
often not even mentioned, because everybody is expected to know that it applies, is the 
“ceteris-paribus-clause”. Definitions are conventions about how to name elements of reality. 
They are not true or wrong. They simply help to communicate ideas. Not all definitions are 
formulated explicitly. Usually the exogenous and endogenous variables as well as parameters 
that are relevant in the theory are defined. However, definitions of terms, with which 
everybody in the field is familiar, are often not given. 
 
Logical sentences are at the very heart of putting together models, because they combine 
complex and complicated relationships in a consistent way. Axioms are important logical 
sentences, which normally can be expressed in mathematical terms. Another important kind 
of logical sentences are causal relationships, which give information about cause and effect. 
Often researchers formulate causal relationships in the form “if … then …”. In case a 
researcher wishes to explain an economic situation the “then …” part of the causal 
relationship is known whereas the “if …” part, i.e. the cause is searched for (cf. Machlup, 
1978, 455f). In case a researcher wishes to prognosticate a future economic situation it is the 
other way around, i.e. the cause is known and the effect is searched for. Therefore, causal 
relationships can say something about the functioning of the real world in the past and the 
future. 
 
Data is particularly important in our further discussions as it contains claims about parts of 
reality, which play an important role in inference (see Section 2.2.). When discussing how to 
derive data it is crucial to be aware that "... (e)mpirical analysis in any research field is 
entwined in theoretical analysis. That is, empirical work depends on theory for concepts, 
definitions and hypotheses, all of which are used as foundations for empirical investigation" 
(Coward/Foray, 2002, p. 540). This means, that we do not only use data to build our theories 
and to check their implications but also that we use theory to produce data from the complex 
and complicated processes going on in reality. Consequently, a number of problems emerge 
from data collection. Collecting data requires making a couple of choices and theorizing 
about how to observe and measure (cf. the following Machlup, 1978, 448-450). When 
researchers collect the data themselves they can make these choices. Often researchers rely on 
data collected by others, which means that aspects important for their research questions 
might not be taken into consideration (sufficiently). However, even if researchers collect the 
data themselves it might be difficult to observe the relevant aspects. There might emerge 

                                                 
2 E.g. one question would be: Is it sufficient that a theory can be potentially expressed in equations to 
turn it into a model? 
3 Causal relationships are also often co notated as hypotheses. 
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some measurement problems. Moreover, data is usually not available for everything within 
the area of application defined by the premises.4 This leads to the well-known problem of 
induction that even if you observe a large part of reality there is no possibility to make all 
observations – in particular not those in the future. Insofar, it is impossible to verify a model, 
as there might always be evidence to the contrary. 
 
Data can be obtained through one detailed study, which is open to critical consideration as in 
such an analysis the problems connected with the production of data become obvious. Usually 
data found in this way is not covering a wide application area. Therefore, sometimes so-called 
stylised facts are used following Kaldor's suggestion (Kaldor, 1968, 177f). Stylised facts 
comprise statements about a wide application area. The problem with stylised facts is that 
they fall from heaven and often remain unmotivated. In order to keep the broad application 
area but to avoid the pitfalls of stylised facts the concept of structural regularities was 
developed, which modifies Kaldor’s concept. In contrast to Kaldor’s original – and still 
widely used – approach, the concept of structural regularities is based on strict guidelines for 
the identification of these regularities (Schwerin, 2001, 92-117). Moreover, it explicitly 
considers chance and necessity elements in economic processes and helps to distinguish the 
both. The disadvantage of structural regularities as an empirical basis for theories lies in the 
fact that it requires a lot of work done on the data part (e.g. Schwerin/Werker, 2003). 
 

2.2 Inference in Modelling 

 
In general, models can be distinguished into two major parts: assumptions and implications. 
Each element of models, e.g. data or premises, can be part of the assumptions and/or of the 
implications. Where you find them depends on the principle of inference or the combination 
of principles of inference used. Three different principles of inference can be distinguished: 
deduction, induction and abduction. Premises and definitions are usually part of the 
assumptions as these elements set the boundaries for modelling. However, sometimes 
definitions and premises can also be part of the implications, especially so if the results of a 
model indicate that premises and/or definitions have to be revised for further research. Data 
can be used in both parts of models. In assumptions data provides an empirical basis to start 
from. In implications data is used to corrobate implications stemming from premises, 
definitions and logical considerations. Logic is of course always at the heart of modelling in 
all parts and puts all elements of the models together in a consistent way. 
 
In the following, we will show how the three different inference principles work. It is 
important to notice that modelling usually combine different principles of inference, thereby 
coming from assumptions to implications. Each principle of inference works in the different 
way, although meeting the same end, namely inferring implications from assumptions. 
 
Deduction is often summarized as inferring “from general to particular” (cf. Lawson, 1997, 
24). From assumptions implications are derived in an analytical and logical way. For example 
you infer from the general assumption “all ravens are black” the particular implication “that 
the next raven you observe will be black as well”. Assumptions within deduction already 
contain all information that there is available. Generally spoken, deduction sustains the 
information contained already in the assumptions but does not create new one. 
 
If A = B and B = C,              (assumptions) 
then A = C.                 (implication) 
 

                                                 
4 For an analysis of measurement of technical advance as well as problems connected with this see 
Grupp, 1998. 



 #0410 
 

 - 5 - 

In deduction assumptions contain all possible elements of models, like e.g. premises, 
definitions or causal relationship. Therefore, it is often claimed that inference in deduction is 
necessary in the sense that the conclusions stemming from the assumptions are correct. In 
formal sciences like mathematics this holds, because assumptions are often provided in the 
form of axioms, i.e. they are self-evident and need not be proven. In social sciences like 
economics such self-evident assumptions do not exist. Implications drawn from premises are 
in general true but only in the sense that they are logically derived. In social sciences without 
self-evident premises available it is virtually impossible to derive implications that are true in 
the sense of correctly describing, explaining and prognosticating reality. 
 
Induction is often summarized as inferring “from particular to general” (cf. Lawson, 1997, 
24). Its assumptions describe a part of a larger population and then infer conclusions about the 
characteristics of this larger population. For example you start from the assumption of the 
particular observation “that you saw numerous black ravens today” and infer from this the 
general implication “that all ravens are black nowadays”. As the inductive principle runs 
“from particular to general” it is often considered as creating information - however doubtful 
one. The inference in induction says something not contained in the assumptions. If the 
inference arguments are strong it is probable that the claims made about the conclusions hold. 
Inductive inference is based on data. However, even if the number of observations in the data 
set is huge it is in principle impossible to have all observations available, not the least because 
future events cannot be observed. This means that the implications derived from data are 
uncertain. In the future, the same will only happen with an unknown probability. This 
probability is impossible to gain, because future observations can by definition not be made. 
 
Abduction5 classifies “particular events into general patterns” (Lawson, 1997, 24). You start, 
e.g., from the particular observation “that there are numerous black ravens” and try to 
undercover the underlying mechanisms about what is “disposing ravens to be black”. You 
might, e.g., look for other animals that are black and study what they have in common, or 
look for the differences between ravens and other birds that are not black. It is important to 
notice that abduction requires data based on substantial and detailed observations. Only then 
is it possible to find meaningful and sensible underlying mechanisms to infer from the 
assumptions to the implications. So, e.g., if we observe that ICT firms are usually having staff 
members below 40 years old and we see a particular person who is less than 40 years old we 
might conclude that this person is an ICT employee. Obviously, this is quite jumping to 
conclusions. Abduction requires much more detailed information to infer implications that are 
likely to hold when confronted with reality. In our example one would wish to know much 
more about the background of ICT employees, e.g. their education etc. to identify a general 
pattern. Then, it would be possible to classify a person according to these characteristics and 
to conclude whether or not s/he is an ICT employee. Whereas an age of less than 40 years is 
the characteristic of very many people a combination of this characteristic with a degree in 
informatics would make it much more likely that the person works in the ICT sector. The 
more relevant details are known about the data the more precisely they can be classified to a 
general pattern. 
 
Abduction enables us to identify underlying structural elements, which explain observations 
we make, and to develop a theory of the part of the world we are investigating. This takes us a 
substantial step further than pure deduction or induction, because abduction helps us to meet 
theory and data in a creative way. By using the principle of abduction we are able to create 
new information. According to Peirce (1867, Vol. 5, 145): 
 

“(Induction) never can originate any idea whatever. No more can deduction. All the ideas of science 
come to it by the way of abduction. Abduction consists in studying the facts and devising a theory 

                                                 
5 Abduction is often also called retroduction. 
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to explain them. Its only justification is that if we are ever to understand things at all, it must be in 
this way.” 

 

3. Critical Realism as the Methodology for the Empirical Calibration of 
Simulation Models 

 
We want to show how simulation models can be empirically calibrated and which 
methodological principles have to be followed to achieve this in an appropriate and 
meaningful way. From the methodologies used to develop economic models we will look into 
Positivism and Critical Realism. To discuss Positivism is important, as it is the mostly used 
methodological basis for economic modelling. In contrast, Critical Realism is used only 
rarely. However, we will show that this methodology is best suited to empirically calibrate 
simulation models. First, the role empirics played in simulation models so far is discussed 
(Section 3.1). Then, the features of Positivism and Critical Realism are analysed to show that 
Critical Realism is best suited to meet the requirements of calibrating simulation models 
(Section 3.2). 

3.1 Empirics in Simulation Models 

 
Simulation models in our understanding are tools of heterodox economics and therefore are 
normally used in contexts where agents are heterogeneous and decide under uncertainty. 
These features usually lead to underdetermined equation systems so that simulation methods 
have to be used to find (range of) solutions for the models. However, it is important to note 
that we do not consider mainstream models that use simulations as a mathematical tool to 
solve underdetermined equation systems as simulation models here. In these models, 
assumptions about the behaviour of economic agents, the structure of the economic systems, 
and the underlying mechanisms are made and the implications calculated. The only difference 
is that simulating the results allows for more complex models but causes on the other hand 
more difficulties in analysing the results. Such an approach still faces the problem that in 
social sciences no self-evident axioms exist. Nevertheless, protagonists of such an approach 
do as if there are such self-evident axioms, from which necessary implications can be derived. 
 
There are only few simulation models of the heterodox kind that include empirical elements, 
i.e. history-friendly models (Malerba, Nelson, Orsenigo & Winter 1999 and Malerba & 
Orsenigo 2002) and microsimulations (Citro & Hanushek 1991). History-friendly models 
represent case studies and lack the possibility of generalization. They start with some 
empirical knowledge about real processes – in the one case some stylised facts and in the 
other case detailed knowledge about one historical realisation – and try to find a model that 
leads to processes with the same characteristics. Although this is not mentioned in the final 
publications, this means that different models are tested and rejected by the empirical 
knowledge until a model is found that is not rejected. It is then argued that the model might 
describe the mechanisms underlying the known empirical facts. Hence, an inference is made 
from some, often a few empirical facts to a model describing the whole complex of involved 
processes. The same holds for many mathematical models in mainstream economics, although 
this topic is less discussed there. This kind of simulation approach is often criticised because 
of its lack of completeness, its questionable general validity and its lack of rigour. 
Nevertheless, such an approach has several advantages in comparison to other approaches. In 
contrast to mathematical modelling, such an approach can deal with complex mechanisms 
that include random events. Furthermore, through simulations data can be produced that can 
then be analysed. This means that a simulation approach can deal with situations where little 
empirical data is available and that mechanisms and relationships can be studied that cannot 
be directly observed in reality. 
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In microsimulations comprehensive empirical knowledge about the changes of a system in the 
past is used to model future developments. Typically transition probabilities and trends in 
variables and parameters are empirical estimated. These are, then, used to predict the 
dynamics in the future. An example is the prediction of the impacts of policy proposals, such 
as larger benefits for the disabled (e.g., Bagley, Burpee & Jetté 2000). Immigration, 
emigration and birth rates are estimated on the basis of empirical data about the past whereby 
trends in these rates are considered. Then a simulation model is developed that includes these 
empirically estimated rates and processes. Finally, the developed model is used to make 
prediction about future developments. Microsimulations are, in general, used if 
comprehensive data is available about the processes on the micro-level. They represent a 
special case of the method that we propose below. 
 

3.2 Positivism and Critical Realism as Methodologies in Economic Modelling 

 
From the methodologies used to develop economic models we will look into the approaches 
of Positivism and of Critical Realism. By and large economics uses Positivism as 
methodological basis for modelling, whereas it uses Critical Realism only rarely. Positivists 
combine induction and deduction as principles of inference. They start from general 
assumptions and infer implications for economic processes from them. If positivists include 
data in their modeling, they confront the implications from deduction with inductively found 
results. Their aim is to objectively measure and quantify observable facts as well as to search 
for empirical regularities that help to describe, explain and predict reality. Positivists “… have 
a notion of causality and connectedness in their theorising, though make closure assumptions. 
Two forms of closure are central to this perspective. The intrinsic condition of closure - which 
can be characterised loosely as implying that a cause always produces the same effect  ... The 
extrinsic condition of closure - which loosely can be understood as implying that an effects 
always has the same cause ...” (Downward/Finch/Ramsey, 2002, 482). 
 
Positivism has two problems that are particularly important for our discussion of how to 
empirically calibrate simulation models. First of all, it is impossible – like already stated 
above – to find axioms in social sciences that hold in general. This limits the value deduction 
has for theoretical work in social sciences in general and in economics in particular. To make 
statements on such deductively inferred implications is already doubtful. It does only partly 
improve the model to then extent the analysis by confronting the inferred implication with 
empirical data in an inductive way. The problem that it is impossible in social sciences to 
infer theoretically the initial axioms remains. The second problem stems from the fact that we 
want to develop a methodological basis for simulation models used in the heterodox 
economics. This means that agents in these models are heterogeneous and decide under 
uncertainty. These assumptions lead to complex and complicated patterns of the economic 
processes to be described, explained and prognosticated. These patterns cannot be covered by 
the aforementioned conditions of closure, which suggest that one cause has one effect and the 
other way around. 
 
Critical Realism, which we will suggest as the appropriate methodological basis for 
simulation models used in heterodox economics, uses abduction as principle of inference and 
uses so-called semi-closure to account for the fact that different reasons can have the same 
effect and the other way around. Protagonists of this school of thought recognise that the 
world is structured into different layers (Downward/Finch/Ramsey, 2002). They aim at 
describing and explaining empirical facts in terms of their underlying structures, i.e. in terms 
of other layers of reality. This approach uses abduction to infer from empirical facts and 
observations to the general patterns underlying them, thereby giving a causal explanation on a 
deeper level. Critical Realists point out that institutions co-evolve with agents own mental 



 #0410 
 

 - 8 - 

models, thereby providing a situation of quasi-closure, i.e. institutions provide stable 
conditions upon which agents can base their behaviour for a certain period of time 
(Downward/Finch/Ramsey, 2002, 481f). This means that a specific connection between cause 
and effect might remain for a while but also changes over time (Downward/Finch/Ramsey, 
2002, 495). 
 
Simulation models in our understanding (see Section 3.1) are tools of heterodox economics 
and therefore are normally used in contexts where agents are heterogeneous and decide under 
uncertainty. This means that they face a much more complex and complicated environment in 
which they nevertheless have to take decisions and act. One could jump to the conclusion that 
under such circumstances it is impossible to develop any models based on empirical data. 
However, this is not so. Protagonists of Critical Realism have started to develop a 
methodology that is providing a way to deal with these issues and we will use and further 
develop their insights in order to provide a methodological basis for the empirical calibration 
of simulation models. 
 

3.3 Critical Realism in Simulation Models 

 
In line with Critical Realism, we argue that what we observe in reality is the result of 
processes on a deeper level. Therefore, it is not sufficient to describe the relationships on the 
observed level. We need to understand these relationships on the basis of the processes of the 
underlying level. In the following we will show how the methodology of Critical Realism can 
be used to calibrate simulation models in practical terms. 
 
Although our suggestion contains as the major inference principle to put together theory and 
empirics abduction this does not mean that the other principles of inference, i.e. induction and 
deduction, are not used. In fact, they are used quite substantially to prepare the final abductive 
step. First, we will show how the set of assumptions is put together by induction and 
deduction (Section 4.1). We suggest including empirical data available on the assumptions. 
Based on that, implications are inferred by deduction and induction (Section 4.2). Here, 
empirical data about implications inferred from the dynamics of the described economic 
system is used. The two kinds of data that are used have to be different, because they concern 
different levels of the whole system. 
 
In a third and final step, abduction helps us to produce classes of models, which combine 
assumptions and implications based on empirical findings, i.e. only those models are included 
which are not rejected by confronting either their assumptions or their implications with 
reality (Section 4.3). Notice that we do not aim to find one simulation model that describes 
reality. We believe that this is impossible. As in statistics, all that can be done with the help of 
empirical data are two things. First, we can reject some models meaning that we restrict the 
parameters of the general model to certain ranges, so that only a certain subset of all model 
specifications is considered. Second, in a later step we will study the correctness of these 
specifications with the help of empirical data on implications (see below). 
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4. Inference in Empirically Calibrating Simulation Models 

4.1 Induction and Deduction of the Set of Assumptions 

 
The first step, as usual, is setting the assumptions by defining the system that the simulation 
model is intended to describe. This means that the relevant factors and variables have to be 
chosen and their interaction has to be built into the structure of the simulation model. This is 
usually done according to theoretical consideration and common knowledge. However, we 
argue here that the details of the model, the specification of relations and especially the choice 
of parameters should be fixed according to empirical data, i.e. inductively. This is rarely done 
in the field of computational and evolutionary economics (some exceptions can be found in 
Eliasson & Taymaz 2000, Richards 2002, Brenner and Murmann 2003 and Brenner 2004, Ch. 
4). We argue that more can be reached by using simulations. To this end, the premises on 
which the model is build should be induced from empirical data whenever this is possible. Of 
course, the conceptualisation of variables and parameters can never be theory-free. However, 
it is important to base all central assumptions of the model on empirical knowledge. 
 
Whenever no sufficient data is available or whenever the model should capture different kinds 
of systems, the model should be defined as general as necessary. In such a case ranges should 
be defined for the respective parameters of the model. If the data does not allow for 
determining between different forms of relationships between the variables of the model, all 
of them should be included in the model with the help of additional parameters. The ranges of 
parameters have to be chosen such that the modeller is sure that the real values lie within 
these ranges. Logical sentences and premises that restrict the area of application of the model 
can be used to reduce the ranges of the parameters. However, it has to be made clear how this 
reduction is reached.  
 
Hence, we argue that parameters should not be fixed to one value, except if the empirical data 
allows for such a fixing. This means that we do not aim for developing one specific 
simulation model that reflects one bundle of assumptions. Instead, we go for a set of 
simulation models of which each represents one bundles of assumptions. Each specific 
simulation model – in the following we use for simplicity the term `model specification´ -- 
represent one specific choice of parameters and premises (see Figure 1). 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 1: Set of model specifications 
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4.2 Deduction and Induction of Implications 

 
Each model specification can be run separately. This is the usual approach in the literature, 
where mainly one specification (with respect to the parameters) of the simulation model is run 
and its characteristics are studied. Due to the existence of stochastic processes in the models, 
many runs are necessary to obtain a complete picture of all possible implications of each 
model specification.  Whenever a simulation is run for one model specification, a certain 
development of the artificial system results. We call this a theoretical realisation. Rerunning 
the simulation for the same model specification might lead to exactly the same theoretical 
realisation. However, because of the stochastic processes that are included in the model, it is 
more likely that a different theoretical realisation results. If one model specification is 
simulated many times, a set of theoretical realisations results. For each model specification 
we can determine such a set of theoretical realisations. 
 
There are an infinite number of model specifications. Therefore, not every model 
specification can be studied. A Monte-Carlo approach is chosen. This means that many model 
specifications have to be randomly picked and the set of theoretical realisations (depicted as 
an ellipse in Figure 2) for each of the picked model specifications have to be studied by 
deduction. The more model specifications are examined the higher is the validity of the 
obtained results. Therefore, a high number of simulation runs is required for the procedure 
that is proposed here. However, with increasing computer power this will become less of a 
problem in the future. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Figure 2: Set of model specifications and sets of realisations 
 
Notice that the random choice of model specifications has nothing to do with the chance 
elements that are included in the models. Examining only a (high) number of randomly 
picked model specification is simply a device to deal with the problem that simulations 
cannot be run for an infinite number of model specifications. This is the only disadvantage of 
this method compared to a mathematical analysis of models. This disadvantage becomes the 
smaller the larger the number of analysed model specifications. 
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The stochastic elements in the models are responsible for the fact that one model specification 
can cause different theoretical realisations. As a consequence, two different model 
specifications might cause the same theoretical realisation (see the overlapping ellipses in 
Figure 2). This is what critical realists mean when they state that different causes can have the 
same effect. 
Now the second kind of empirical data is used, those about empirical realisations of the 
dynamics of the whole system that is modelled. The simulation models that are considered 
here describe the dynamics of a system that is part of the whole economy. Usually it will not 
describe only one specific system but a number of systems that share common features (e.g. 
the same processes in different countries or industries). Whenever one such system and its 
dynamics are observed, we call this one empirical realisation of the class of systems that our 
models aim to represent. Usually it will be possible to gather data about the characteristics of 
several empirical realisations. 
 
Let us consider the treatment of one empirical realisation. We can examine for each model 
specification whether the observed realisation falls into the range of theoretical realisations 
that this model specification predicts. According to the above statements, there is not only one 
model specification that is able to predict the empirical realisation. However, we can reject a 
number of model specifications on the basis of the empirical observations. Hence, for each 
model specification we can statistically state whether or not it is rejected by the empirical data 
about one specific realisation of the system’s dynamics. A subset of model specifications that 
are not rejected remains. 
 
Furthermore, for all model specifications that are not rejected by the empirical data the 
likelihood for their validity can be given. A Bayesian approach can be used to do this (see 
Zellner 1971 and Ghosh & Ramamoorthi 2003). Hence, a probability distribution over the set 
of model specifications is obtained for each realisation that is empirically observed.  
 
In the literature such an approach is taken in statistics under the name of Bayesian inference 
(see Zellner 1971). There a set of models is defined and for each model the likelihood of its 
adequateness is empirically estimated. Each model is then weighted by its likelihood and 
predictions are made on the basis of the weighted sum of the predictions of each model. This 
can also been done in the approach taken here. The major difference is that the method 
proposed here uses empirical data extensively also for the development of the set of models 
that are tested. Furthermore, we propose two further steps in the analysis that are discussed in 
the next section. 
 

4.3 Abduction of a Set of Models 

 
Above we have determined all model specifications that are in line with the observation of 
one empirical realisation of the dynamics of the system (ellipse in set of assumptions in 
Figure 3), such as, for example, the development of an industry in one country. Hence, the 
above procedure allows for obtaining a subset of model specifications for each empirical 
realisation. If a number of realisations are observed, for each of them the subset of model 
specifications that cannot be rejected can be determined. Now these subsets can be used to 
determine the characteristics of the system. This is done in two steps, which are explained in 
the following. 
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Figure 3: Abduction Between Set of model specifications and Set of realisations 
 
Usually not only one realisation is observed. In general we look for models that can explain a 
number of similar systems (e.g. the developments in different industries or in different 
countries). For each single empirical realisation the above method leads to a subset of model 
specifications that are in line with this realisation (see the shade ellipse in Figure 3). If we 
have a number of empirical realisations, a number of subsets of model specifications result. 
 
It is now possible to classify the empirical realisations in groups, either according to empirical 
characteristics (e.g. high-tech and low-tech industries) or according to the similarity of the 
subsets of model specifications, which are not rejected through the above procedure. This 
means that we define kinds of systems for which we are interested in their common features. 
This is the major aim of abduction: a classification of events, facts or processes and a 
determination of the characteristics of each class. Here, it means that we want to define a 
class of systems or dynamics and study the characteristics that all systems or dynamics in this 
class have in common. Two steps are necessary. First, the class of systems or dynamics that is 
to be studied has to be defined, all empirical data, meaning all observations of such systems 
or dynamics, has to be gathered and the above method has to be used to identify the 
respective set of model specifications (depicted by the arrows leading upwards in Figure 3). 
Second, the common characteristics of all realisations that can be obtained by any model 
specification in this set have to be studied (depicted by the arrow leading downwards in 
Figure 3). Let us assume that a group of empirical realisations is defined that belongs to the 
class of systems that is to be studied. The choice of empirical realisations defines a set of 
model specifications that consists of those model specifications that are not rejected by all 
empirical realisations in the group that is considered. All these model specifications have to 
be considered because the aim is to identify the characteristics that are common to all systems 
in the chosen group. Notice that in this case it is impossible to assign a probability to each 
model. The empirical realisations represent just a few examples of the dynamics that might be 
caused by the studied kind of system. It is in no way clear how we should weight the induced 
knowledge of each empirical realisation. This would only be possible if we have a very large 
number of observations. Hence, we refer from calculating probabilities for model 



 #0410 
 

 - 13 - 

specifications and only determine a subset of model specifications that is in line with the 
observed realisations (all the area within any of the ellipses in the upper part of Figure 3). 
 
To understand the characteristics of a class of systems, now all model specifications that 
belong to this subset can be simulated. For each model the theoretical realisations that it 
might imply can be studied. What kind of characteristics of these realisations is studied 
depends on the research question. Everything is possible that is also done in the common 
simulation approaches that are based on theoretical models. For example, it is possible to 
study causal relations or the outcomes of the modelled processes. In the contrast to the 
common approaches the model specifications that are used here are based on an extensive use 
of empirical data that causes a high validity of the obtained results. All implications that the 
whole group of models share are characteristics of the studied class of systems. 
 
This means that, instead of arguing that there is one model that explains all systems within a 
certain class, we argue that a subset of model specifications can be obtained by abduction. 
This subset of model specifications contains all possible bundles of assumptions that cannot 
be rejected by the empirical data about the systems that are to be studied. If the model 
specifications in this subset share characteristics, these characteristics can be expected to hold 
also for the real systems (given the development of the model has not included any crucial 
and false premise). Hence, we obtain robust knowledge about the characteristics of a certain 
kind of systems. 
 
If the characteristics within a group of model specifications differ, the causes of these 
differences can be studied. It can be examined which factors in the models are responsible for 
the differences. Hence, although we will not know the characteristics of the real systems in 
this case, we will obtain knowledge about which factors cause different characteristics.  
 

5. Conclusions 

 
To underpin simulation models by empirical data means that one has to step into 
methodological discussion, in particular into the question how deduction, induction and 
abduction are related to each other. Most economists are educated in the tradition of 
Positivism. As a consequence heterodox as well as mainstream economists pretend - at least 
in their papers - that there are theoretical concepts they can deduce a priori and then test them 
by confronting them with data. Despite the way economists organize their papers it is correct 
to say that they also do not really deduce all abstract concepts a priori in a first step but that 
they use empirical insights, mostly emerging from a few observations interpreted by common 
sense in order to come to a theory and then test this theory. What we argue in this paper is that 
these steps should be made clear. Models should be based in a well-described way on 
empirical data. Additional assumptions that are not based on empirical knowledge should be 
avoided if possible or made at least explicit.  
 
In order to calibrate simulation models we developed a methodology based on Critical 
Realism. In order to do so we suggested using different sets of empirical data in two ways by 
building on two strands of literature, which have already started to deal with this problem. 
Firstly, in the literature on microsimulations empirical data is extensively used for setting up 
the simulation model (see, e.g., Citro & Hanushek 1991). Secondly, in statistics Bayesian 
inference has been proposed to use empirical data in order to detect the adequate models 
within a set of models (see Zellner 1971). Both these strands of literature are mainly 
concerned with predicting future developments. We, instead, aimed to infer statements about 
causal relations and characteristics of a set of systems or dynamics, such as, e.g., the 
development of an industry, that have a general validity for this set of systems or dynamics. 
In other words, we aimed for general statement about the features of systems and dynamics 
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instead of probabilistic predictions about their future and for statement about a set of systems 
or dynamics instead of an analysis of one single system. To this end, we combine the 
procedures of microsimulations and Bayesian inference. 
 
We have argued that the result of such a twofold use of empirics can be used in an abductive 
way to create knowledge about classes of systems, where the classes can be chosen according 
to different considerations. This leads us beyond the common use of simulation model. We 
are able to infer from empirical data characteristics of classes of systems that have a general 
validity. The examined characteristics might include causal relationships as well as 
predictions of future developments. Hence, we are also able to add to the understanding of 
economic processes. However, it is important to realize that according to Critical Realism 
these results hold only temporarily, because either the underlying mechanism might change in 
time or because better underlying causal relationships are identified at a later stage. 
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